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Abstract 
 The University of Wisconsin-Madison Small Molecule Screening Facility (SMSF) performs research to 
discover compounds that bind with specified targets (usually proteins). Due to time and cost constraints, the 
SMSF is limited to real screening on a very small pool of candidate compounds with high throughput screening 
(HTS) methods. Our research team proposed to enhance or replace current virtual enrichment methods with 
massively multitask deep learning to substantially increase the odds of HTS success. Our challenge was to first 
create a working model and then to extend that model to provide an ongoing predictive solution for the SMSF. 
During this summer term project the first phase was completed, which involved the replication of past 
experiments with deep learning models and other baseline methods. This project report describes my research 
efforts and experimental results. 
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Introduction 
 The University of Wisconsin-Madison Small Molecule Screening Facility (SMSF) is tasked with drug 
discovery, which requires the identification of molecules that bind non-promiscuously with specified protein 
targets. The lab faces increasing cost challenges as the ratio of drugs discovered annually per billion dollars 
spent has declined by nearly 50% per year since the 1950s [2]. While large pharmaceutical firms such as Merck 
and Pfizer continue to spend a fortune on brute force high-throughput screening (HTS), this is not a viable option 
for the SMSF and many other academic screening facilities.  

Due to time and cost constraints, the SMSF is limited to screening a relatively small pool of candidate 
compounds with HTS methods. Among the millions of molecules that are potentially viable and safe for humans, 
only a few are in fact good candidates for any given target protein. Due to the systemic problems with traditional 
drug discovery, new methods must be found to increase the declining efficiency of traditional approaches. One 
possible solution to this problem is virtual screening for increased enrichment levels. Enrichment refers to 
increasing the density of good targets in a pool of candidates as opposed to a random selection baseline. 

“In silico" (Latin for “in silicon” [49]) refers to running a simulation on silicon semiconductors as opposed to 
running lab experiments. With in silico screening, computer simulations are used to prioritize targets for HTS 
based on predicted binding interactions. Virtual screens can be one of two types: (i) structure-based and (ii) 
ligand-based. The SMSF team currently uses a structure-based virtual screening process that leverages multiple 
virtual docking-based algorithms (AutoDock and AutoDock Vina). Using this process, the team is able to achieve 
an enrichment in the range of 5 to 10 times better than random selection. Unfortunately, these enrichment levels 
are still too low to obtain several high-quality hits in a screen of 100 to 1000 small molecules. Higher enrichment 
levels are required to have a significant impact on the screening workflow. 

Recent work performed by researchers at Stanford and Google shows great promise in multitask, deep learning 
based methods of virtual screening in “Massively Multitask Networks for Drug Discovery” (MMNT) [1]. Our 
research team proposed to enhance the SMSF's virtual enrichment methods with similar multitask deep learning 
methods. Our goal was to first replicate and then to extend previous work to provide a working solution for the 
SMSF. The scope of this summer 2015 project is the first phase of this research and includes: data collection, 
cleaning, and the replication of the machine learning models used in the MMNT experiments on our own data. 
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This report includes general bioinformatics and machine learning to provide context, as well as our experiments, 
results and conclusions. The project report is organized as follows: 1. bioinformatics, 2. machine learning, 3. 
experiments and 4. conclusions. The sections on bioinformatics and machine learning provide context for the 
project and outline the foundational concepts on which our experiments were built. Various historical methods in 
each discipline are explored and contrasted with more recent approaches to show the motivation for our decision 
to use a multitask, deep learning ensemble for drug discovery. 

Bioinformatics 

 As biological information continues to grow exponentially with data-driven scientific advances such as 
the Human Genome Project, the necessity for computer-aided analysis has grown increasingly important. 
Bioinformatics has evolved to combine several other fields including: computer science, statistics, and applied 
math. One goal of bioinformatics is to store and analyze biological data for the purpose of drug discovery and 
development. 

Bioinformatics: History 
 All living organisms depend on three primary biopolymers: proteins, Deoxyribonucleic acid (DNA), and 
Ribonucleic acid (RNA). These are essential to all known forms of life since each plays an important and 
interdependent role in the cell. Proteins were first discovered in the early 1800s, and nucleic acids (DNA, RNA) 
were discovered in 1868. The important relationships between these macromolecules was not understood until 
many years later in 1956 when Francis Crick established the central dogma of molecular biology, which states 
the flow of genetic information in a biological system “DNA Makes RNA, and RNA Makes protein” [16] (Figure 1). 
Amazingly, this remains one of the central keystones of biology over half a century later. The steps in this 
process are now better understood as transcription, translation, replication and splicing. Years later in 1970 the 
field of bioinformatics was created to model and analyze life science data which was quickly growing too vast for 
human comprehension alone. A brief history of micro biology and bioinformatics follows. 

In the early 1800s proteins were discovered as a distinct class of biological molecules by Antoine Fourcroy [6]. 
Later, in 1838 the Swedish scientist Jöns Jacob Berzelius named this type of molecule “protein” based on the 
greek work “proteios” which means “primary”. In 1926 James B. Sumner demonstrated that the crystalline 
enzyme urease is also a protein [7], which was the turning point where the regulatory role of protein was first 
understood.  

In 1868 Friedrich Miescher discovered nucleic acids, but the role of DNA and RNA in protein synthesis was not 
discovered until much later. In 1928, Frederick Griffith performed experiments where the traits of heated and 
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killed type III-S smooth, lethal Pneumococcus bacteria could be transferred to a type II-R rough (non-lethal) 
strain, which resulted in killing the host [8]. This lead to a later discovery in 1943 where DNA (which was not 
destroyed by the heat) was discovered as to be the mechanism for transforming the previously non-lethal 
bacteria. In 1953 Francis Crick and James Watson presented the modern double-helix model of DNA in the 
Journal of Nature. Crick outlined the relationship between DNA, RNA and Protein and this became the basis of 
molecular biology in 1956.  

In 1970 Paulien Hogeweg and Ben Hesper created the term “bioinformatics” to refer to the study of information 
in biotic systems. The modern meaning of the term is slightly different, and bioinformatics now combines various 
disciplines including computer science, engineering, statistics, and applied math to discover and process life 
science data. In bioinformatics, image and signal processing techniques are applied to biological data to 
simulate, model, and analyze Deoxyribonucleic acid (DNA), Ribonucleic acid (RNA), protein structures, and 
associated molecular interactions.  

Bioinformatics: Practical Applications 
 One goal of bioinformatics is to understand the ways in which various macromolecules of life interact, 
including protein, RNA and DNA. Within a eukaryotic cell there is a nucleus which contains chromosomes. These 
chromosomes contain most of the DNA within a living organism [5]. The DNA molecules consist of repeating 
patterns of cytosine (C), guanine (G), adenine (A), or thymine (T). Together, C, G, A, T encode the various 
instructions required to create and regulate life (Figure 2). A gene is a section of DNA which confers various traits 
of a species from parents to offspring. For example, the human genome contains 3.1 billion base pairs where 
about 2.9% encode genes and the other 97.1% (originally considered useless) contains instructions for when, 
where, and what volume of proteins to generate.  

A protein is a large biomolecule which consists of long chains of amino acid sequences with a three-dimensional 
structure which is a result of the protein folds. The protein folds and resulting structure are determined by gene 
sequences, and thus, the genetic sequence determines both the form and function of proteins which are 
generated. Large proteins form important building blocks of life including muscle, cartilage, skin and hair. Smaller 
proteins such as hemoglobin, hormones, antibodies, antigens, and enzymes also play a critical role in regulating 
life.  

As biological data continues to grow at an exponential rate, computers are becoming increasingly invaluable 
tools for analyzing various aspects of molecular biology, including genome sequences and macromolecular 
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structures. Bioinformatics is a broad field; however, the focus of this project is on predicting protein-compound 
interactions. For example, by designing a specific ligand which binds with a protein target, this can lead to the 
discovery of a new drug that changes the behavior of that protein and potentially cures a disease. There are a 
number of popular approaches for discovering protein-compound compatibility for drug discovery. The most 
common approaches include high-throughput screening (HTS) and virtual screening. Virtual screening includes 
docking methods, as well as machine learning based approaches. 

Bioinformatics: Experimental Approaches 
High Throughput Screening (HTS) 
 By automating the process of running experiments with software, robotics, sensors, and liquid handling 
mechanisms, millions of chemical, genetic and pharmacological experiments can be performed quickly and 
accurately (Figure 3 illustrates an uHTS facility). Generally a clear plastic microtiter plate with 384, 1536 or 3456 
wells is used. Each well is 9mm deep and contains the experimental matter, such as a chemical compound, 
protein, or cells (typically between 5 and 200 L per well). After sufficient incubation time has passed for the 
reaction to complete, measurements are taken from each well either manually or with a microplate reader. A 
microplate reader can use various detection modes to measure reactions, such as absorbance, luminescence, 
or fluorescence intensity [3]. An experimental compound with the desired reaction is considered a hit.  

Artificial Enrichment: Docking 

 Brute force HTS is not financially viable for many institutions, and in the last decade an increasing 
number of researchers have turned towards computer-based enrichment methods to narrow down the number of 
compounds before running experiments. If a researcher can obtain the crystal structure of the target (e.g. protein 
fold structure), programs such as Autodock Vina can generate a three-dimensional model of the target and 
compare it the structures of various natural and designer compounds to determine whether physical docking is 
possible (Figure 4 illustrates the docking process). A computer simulation checks a series of docking poses to 
determine whether a given compound is structurally compatible with the target [4]. 

Typical docking software is unable to account for water displacement and various atomic level bonds which the 
three-dimensional structure simulation does not account for. In other words, although a compound might seem to 
be compatible with the crystal target structure, there may be some atomic level physics that block the binding. In 
practice, the UW-Madison SMSF is only able to achieve virtual enrichment in the 5 to 10 range with the docking 
approach.  

Artificial Enrichment: Machine Learning 
 Compared to most other scientific disciplines, artificial intelligence (AI) is still in its infancy. The field of AI 
did not formally exist until the mid-19th century when the first computers were created. Since that time both AI 
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and the sub-field of machine learning have rapidly evolved. As improvements in machine learning are discovered 
these advances are applied in many other fields including bioinformatics. Over the years, many different 
machine learning algorithms have been used to solve bioinformatic problems (such as artificial enrichment to 
predict protein-ligand binding). Examples include: fuzzy expert systems, genetic algorithms, inductive logic 
programming, logistic regression and decision trees. 

Recent discoveries in deep learning show great potential for significant improvement over traditional virtual 
enrichment methods. To provide historical and theoretical context, we will introduce artificial intelligence, 
machine learning, as well as machine learning algorithms commonly used in bioinformatics. Next, we will lay the 
groundwork for deep learning by discussing multitask learning, perceptrons, and neural networks, as well as the 
key discoveries that made deep learning possible. Finally, we will discuss how multitask and deep learning 
algorithms were used in our experiments.  

Artificial Intelligence 

 What is artificial intelligence (AI)? According to John McCarthy (Figure 5), one of the first modern AI 
researchers, it is “the science and engineering of making intelligent machines, especially intelligent computer 
programs” [30]. The goal of AI is to create computers and software (intelligent agents), capable of learning and 
making intelligent decisions. An intelligent agent is an autonomous entity which observes its environment and 
makes decisions designed to maximize the possibility of success.  

Artificial Intelligence: History 

 The first general purpose computer “Electronic Numerical Integrator And Computer” (ENIAC) was 
created in 1941. ENIAC contained thousands of vacuum tubes, crystal diodes, relays, resistors and capacitors 
and occupied 1800 ft2. It was said that when ENIAC turned on, the lights in Philadelphia dimmed [20]. When 
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ENIAC was publicly announced in 1946, the media described the computer as a “Giant Brain” [20]. This 
designation is somewhat misleading considering this machine could not pass the Turing test for AI. The Turing 
test requires that both a human and an artificially intelligent machine carry on a conversation. If a human 
observer cannot decipher between the machine and the human, then the machine has passed the Turing test 
[21] (Figure 5).  

In 1948 while working at the National Physical Laboratory in London, Alan Turing wrote a paper called “Intelligent 
Machinery, a Heretical Theory” in which he outlined various machine learning models which are variations on 
what are now called neural networks. The work was not published until 14 years after his death; some speculate 
this was because Sir Charles Darwin (grandson of the famous naturalist) dismissed his work as a “schoolboy 
essay” [23]. Alan Turing created and published his “Turing test” two years later in 1950. 
 

In 1956 the first research in artificial intelligence began with the Dartmouth Research conference. Tens of 
millions of dollars were awarded in research funding but the scientists over-promised stating an artificially 
intelligent machine as smart as a human being would be created within a generation [24]. The research failed to 
deliver satisfactory progress and research funding was withdrawn. In decades since then, financial sector 
support for AI research has been very cyclical. The period of 1974 to 1980 is described as the first AI winter 
since funding almost completely dried up, and the period of 1987 to 1993 is called the second AI winter. The 
term “AI winter” was coined by researchers who survived the long periods of funding cuts [24]. The intersection 
of statistics and computer science revived interest in machine learning during the 1990s, and the field shifted 
towards a more data-driven approach.  

Although the failure to accomplish the grand promises of AI research sullied the reputation of the field in the 
past, industry and research success in more recent years has created a resurgence of interest in the field. 
Moore’s law and the evolution of computer processing speeds have also played a critical role in making modern 
AI a possibility. For example, in 1997 IBM’s Deep Blue computer defeated the current world chess champion 
Gary Kasperov, and in 2005 a Stanford robot won the DARPA grand challenge by driving itself through 131 miles 
of desert trails. In 2009 Google built a self-driving car, and in 2011 IBM’s Watson computer defeated the current 
Jeopardy game show champions. In 2011 smartphone applications included: Apple’s Siri, Google Now, and 
Microsoft’s Cortana, which all allow a human to interact with their smartphone device through natural language.  

Since the late 1990s the rise of the internet and subsequent technology industry success with machine learning 
based applications has demonstrated that AI-based companies are economically viable. The rise of multibillion 
dollar web-based search companies such as Google, Yahoo, and Baidu demonstrate some significant progress 
milestones in AI such as web crawlers, data mining, and natural language web searches. Machine learning has 
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now become a working practical solution and many traditional organizations in both science and industry have 
started adopting machine learning approaches to solve data related problems.  

As mentioned previously, many labs are experiencing cost challenges since the ratio of drugs discovered 
annually per billion spent have fallen in half each decade for several decades [2]. While big pharma has 
embraced brute force HTS solutions, smaller research labs have been forced to turn to more creative solutions. 
Recent advances in data-driven machine learning has the potential to help solve this problem by allowing these 
organizations to predict protein-ligand binding potential with computer simulations, narrowing down the pool of 
candidate choices for HTS resulting in a better cost-per-hit ratio. We will now take a brief diversion into the 
history of machine learning before discussing some of the machine learning methods commonly used in 
bioinformatics.  

Machine Learning: Introduction 

 Knowledge acquisition was identified as an artificial intelligence bottleneck early on in AI research; 
addressing this issue is the focus of machine learning. The bottleneck was caused by an exponential growth in 
data which resulted in similar growth in the need for expert systems. Machine learning originally evolved from 
statistical pattern recognition whereby a machine could use algorithms to recognize patterns in data. Machine 
learning extends the idea of pattern recognition to ‘learn’ from the past and predict future patterns.  

The goal of machine learning (ML) is for machines to learn from experience and act on that learning without 
being explicitly programmed for that. In other words, the goal is to create machines that learn implicitly from 
algorithms with little or no human supervision. This is in contrast to expert systems which must be hand-crafted 
based on the knowledge of experts (Figure 6 shows heuristics for choosing the right ML algoritm). 

In more formal terms, machine learning is the study of algorithms that improve their performance P at some task 
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T with experience E. A well defined machine learning problem clearly specifies <P, T, E>. For example, the task 
might be predicting how much a consumer might enjoy reading a book (T), given a user-history of past book 
ratings (E), and the difference between the predicted and actual rating is performance (P). There are many 
different kinds of machine learning algorithms and some are more effective in some contexts than others. Some 
examples of common machine learning algorithms are: inductive logic programming, logistic regression, decision 
trees, random forests and multitask learning. 

There are two primary types of machine learning — supervised and unsupervised. In supervised learning, Y is 
predicted given a feature vector X. For example, given the features of a molecular compound such as atomic 
structure and chirality, one could try and predict if the compound will bind (active = 1) or not bind (inactive = 0) 
with a target protein Y; this is a binary classification task {0, 1}. One could then use feature vectors from many 
known compounds that were already tested in a lab (and determined as active or inactive) to train a machine 
learning model. When Y is already known for a particular dataset, it is referred to as “labeled” data. After the 
model was trained with the labeled data one could then input a new untested molecule into the model and 
predict whether or not the compound will be active or inactive (will it bind with the protein target). If the machine 
learning model tends to make accurate predictions about binding potential (active / inactive ), then the model 
generalizes well. 

In contrast, with unsupervised learning, the data has no labels. In other words, with the compound-protein 
binding example, the algorithm would only be given the molecule vectors X without any classification preference 
Y for the protein. A machine learning algorithm such as k-means clustering could then be applied to find 
interesting patterns or groupings within the unlabeled data. Unsupervised learning has many bioinformatics 
applications, especially for experiments with vast amounts of unlabeled data. For example, recent work by 
Michael Newton et al. demonstrated that unsupervised compound clustering can be used to improve docking 
score enrichment [64].  

Aside from supervised and unsupervised learning, there are also semi-supervised hybrid machine learning 
algorithms that use a small amount of labeled data and a large amount of unlabeled data. Since this project uses 
a supervised machine learning approach (vast quantities of labeled data are available), we now shift our focus to 
a number of common supervised machine learning approaches used in bioinformatics. 

Artificial Enrichment: Machine Learning 

 As mentioned above, artificial enrichment in silico methods can predict potential protein-compound 
binding in a computer simulation. Aside from HTS and docking approaches, machine learning is another 
common virtual enrichment approach. Examples of machine learning algorithms used in bioinformatics include 
fuzzy expert systems, genetic algorithms, inductive logic programming, multitask learning, random forests, 
logistic regression, and artificial neural networks (ANNs).  

Fuzzy Expert Systems 

 In 1965 Lotfi A. Zadeh, a University of California at Berkeley professor, proposed fuzzy sets as an 
extension to classical set theory in mathematics [10]. A fuzzy set contains entities with a continuum in grades of 
membership as opposed to traditional boolean thinking where something is either a member of a set or it is not. 
Zadeh designates traditional sets with absolute membership in binary {0, 1} terms as “crisp sets”. Concepts such 
as union, intersection, convexity and relations were extended to fuzzy sets and the term “fuzzy logic” was 
introduced [10]. This forms the basis for fuzzy expert systems which can deal with “fuzzy” (i.e. partially true) 
concepts. Expert systems use explicit knowledge as opposed to most other algorithms which tend to use implicit 
knowledge (Figure 7 illustrates a fuzzy expert system). 

One advantage of fuzzy systems is that decisions with degrees of uncertainty can be implemented in ways 
humans can understand, which allows the experience of human experts to be incorporated into these systems. 
Fuzzy systems can also deal with noisy data and uncertainty when dealing with a variety of biological patterns. 
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One example application was a fuzzy expert system built in 2000 by Woolf, Peter J., and Yixin Wang. The 
authors used a fuzzy logic approach to analyze yeast gene expression data, which could sometimes predict the 
functions of unknown genes [11]. Fuzzy logic has also been used to enhance docking scores for virtual 
enrichment. For example, In 2009 a study by David Hecht et al. contrasted fuzzy logic, artificial neural networks 
and evolutionary computation for calculating improved docking scores [65]. 

Genetic Algorithms 

 Genetic algorithms are heuristic methods that simulate natural selection within a reproducing population. 
This is done by generating a population of individuals encoded as strings with various possible biological traits. A 
fitness function determines how likely these individuals are to reproduce and provides a measure of goodness 
which represents a global optimum to work towards. The least fit individual drops out of the population and is no 
longer able to reproduce. The remaining individuals go through a crossover state where individuals reproduce 
and mix their genetic traits which are inherited by their offspring. A mutation phase follows where with a very 
small probability that some traits may change. If any individuals have achieved the predetermined optimal level 
of fitness (e.g. some set of “good” traits), then the algorithm stops. Otherwise, the algorithm keeps running 
through additional generations and keeps reproducing offspring and dropping unfit individuals until an optimally 
fit individual is produced.  

Genetic algorithms are used in bioinformatics for multiple sequence alignment (MSA), gene prediction, and 

�9

The block structure of a fuzzy logic system [12].

Figure 7

The standard genetic algorithm in the context of Darwinian selection applied to robots [19].

Figure 8



population genetics modeling. By using MSA, shared evolutionary origins can be inferred from DNA, RNA, and 
protein sequences. The goal of gene prediction is to discover what regions of genomic DNA encode genes. 
Population genetics modeling is a highly mathematical discipline where allele frequencies in a population are 
studied. Through reproduction each parent contributes one allele to an offspring and the net effect of allow 
reproduction in a population directly impacts the allele distribution within a population. Genetics modeling also 
studies the various factors that affect allele frequency such as natural selection, sexual selection, mutation, 
genetic drift and gene flow.  

In 2010 two Swiss researchers applied a genetic algorithm to a population of robots with various traits including 
navigation, homing, predation, brain and body morphology. They found that after a few hundred generations, the 
robots were able to adapt strategies for hunting and evasion, and were able to navigate a maze without bumping 
into any walls. The bots even manifested traits such as cooperation and altruism. The graphic (Figure 8) from the 
study provides a good visualization of how genetic algorithms work, although their specific application is unusual 
(robot evolution). 

Genetic algorithms are also commonly used in docking approaches (virtual enrichment) to predict protein-ligand 
binding. For example, a 1998 study by Morris et al. compared Monte Carlo simulated annealing, traditional 
genetic algorithms and Lamarckian genetic algorithms to predict the “bound conformations of flexible ligands to 
macromolecular targets” [66]. 

Inductive Logic Programming 

 In 1991 Stephen Muggleton coined the term inductive logic programming (ILP), defined as the 
intersection between logic programming and machine learning [34]. Inductive logic programming has proven 
effective for many bioinformatics and natural language processing tasks. ILP works by providing many positive 
and negative examples to an inductive learner which builds logical rules that fit the data. In other words: positive 
examples + negative examples + background predicates => hypothesis. Variations of inductive logic 
programming include: inverse resolution, GOLEM, FOIL, CHAM and CHILLIN.  

Inverse resolution and GOLEM are considered bottom-up ILP systems because they start from the most specific 
clauses that correctly identify positive training examples and generalize until any additional generalization would 
result in misclassification of negative examples. FOIL and CHAM are examples of top-down ILP systems. In a 
top-down ILP system “a specialization operator S produces a set of clauses C which are allowable by the 
language bias from a clause c” [36]. CHILLIN implements a hybrid learning model with combined aspects of both 
top-down and bottom up ILP logic [35]. 

The First Order Inductive Learner (FOIL) is one of the most popular types of ILP and works by using both 
positive and negative training examples for a target concept, as well as background knowledge predicates to 
learn clauses that only identify positive tuples. FOIL is known as a “function free” ILP method because it cannot 
use any constants or function symbols [35] . Foil applies a separate-and-conquer strategy (as opposed to the 
more typical divide and conquer) since each iteration of the algorithm adds one rule at a time until there are no 
positive examples (or few) left. 

In 2010 David Page et al. created an ILP-based model of hexose-binding sites and compared the results to 
several baseline “black box” machine learning methods [67]. The ILP-based method performance was similar to 
the baselines, but ultimately the ILP-based results were more useful since it gave insight into the way the model 
was making decisions. Although ILP is an effective algorithm for solving bioinformatics problems it is not a 
common method. Thus, ILP was not chosen as one of our baseline methods.  

Logistic Regression 

 The name logistic regression is a misnomer because it is used for classification (not regression). Logistic 
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regression is for datasets with 1 or more independent variables (the feature vector X) and a binary dependent 
variable Y with two mutually exclusive outcomes; for example: true or false, active or inactive. Binary logistic 
regression is analogous to linear regression except that the dependent variable Y is a measurement (instead of 
a nominal 0 or 1). Logistic regression uses the logistic function since all numbers using this function up to infinity 
map between 0 and 1 respectively, based on a smooth s-curve. This is ideal for keeping all resulting values 
within probabilistic bounds. 

The logistic regression function f(x) calculation is shown in Figure 9 on the left-side. The right-side of figure 9 is a 
visualization of the input feature vector X1…Xn and the logistic function which is applied to the input vector and 
corresponding weights to produce an output between 0 and 1 resulting with a Y classification based on the 
threshold function (e.g. 0.5). The bias unit W0 is used to shift the entire curve left or right, and the remaining 
weights Wi then help determine how probable the target Y is based on the features X.  

Logistic regression is relatively easy to implement (compared to other machine learning algorithms) and can 
usually generate reasonably accurate classification results for many different types of bioinformatics problems. 
These were some of the reasons for our decision to include logistic regression as one of our baseline methods 
for this project. 

Decision Trees 

 The goal of decision trees is to apply a divide-and-conquer approach and make the tree as small as 
possible, while still correctly classifying the training set; unfortunately this is an NP-hard problem. ID3, C4.5 and 
CART are three of the most common decision tree types. Instead, ID3 decision trees use a heuristic: greedily 
choose splits that maximize information gain. Information gain is maximized by reducing the entropy 
(uncertainty) of random variables in the dataset.  

In information theory, each possible variation of a feature is encoded with a sequence of {0, 1} bits. Instead of 
giving all features an equal number of bits, the least bits are given to the most common features and 
progressively more bits to those features that are the least common.  

Entropy can be measured as the expected number of bits to encode the variable. Conditional entropy can be 
determined if the additional step of conditioning on some other variable is added. Choosing the splits that reduce 
conditional entropy the most is known as mutual information gain [41] (Figure 10), and this is how splits are 
chosen in ID3 decision trees. In other words, at every step the loop considers each possible split and chooses 
the split that maximizes information gain.  
The weakness of information gain is that some features are unique for every instance; gain ratio is used to 
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Above: the entropy and conditional entropy equations used to calculate mutual information for decision tree splits.
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overcome this limitation. Finally, the algorithm stops splitting when all the remaining examples only fit one class.  

The example decision tree below determines whether a business might qualify for a $15,000 loan based on 
credit score and monthly sales. The training set D contains 3 positive and 12 negative examples. Notice how the 
credit score feature filters a larger number of applicants than monthly sales; hence, the tree splits on this 
property first to maximize information gain. Although there might be many more features, there is no need to split 
beyond monthly sales since all examples are now correctly classified.  
 

One of the greatest strengths of decision trees is that the algorithm makes decisions that are inherently easy for 
humans to understand (see Figure 11). Also, decision trees are often a good choice when data is sparse, but as 
the size of the training set increases, decision trees tend to overfit data. Decision trees greedily attempt to 
maximize information gain and this creates an inherent inductive bias in the way decisions are made. This 
means the types of hypotheses a decision tree favors will tend to overfit training examples as the size of the 
dataset increases. 

Random Forests 

 Decision trees (especially deep ones) tend to have low bias and high variance; random forests are an 
ensemble method that overcomes these limitations. This reduces the variance in the overall model at the cost of 
slightly increased bias and somewhat less comprehensible decisions (since many decision trees are involved in 
the final prediction). There are two typical ways random forests randomize the results: bootstrap aggregation and 
random feature selection. 

Bootstrap aggregating (or bagging) builds decision trees on subsets of the data which results in many different 
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Above: an example of a decision tree to determine if a borrower is qualified to obtain a $15,000 loan.

Figure 11

Above: random forest visualization where many decision trees are built from the training data vectors X and result in a 
majority vote prediction for target K [39].

Figure 12



random decision trees which helps mitigate bias (Figure 12 illustrates a random forest). With bagging a random 
sample is drawn from the training data, with replacement, to train a number of different decision trees (typically 
10, 20, 50 or 100). In addition to bagging, random forests also select features from a random subset of features 
to help get more variation in the kinds of decisions that are made. Sometimes this process is referred to as 
feature bagging because this is just like training set bagging, except it is applied to features. Predictions can 
then be made with the combined results of all the decision trees with the mean, or a majority vote. Other 
common methods of randomizing forests include random split selection and random training weights [40]. 

Random forests do not produce stellar results, but they are robust in the sense that they can be applied to 
almost any problem domain and produce “pretty good” (but not great) accuracy. Generally, a domain specific 
machine learning algorithm should (almost) always outperform random forests. This along with ease of 
implementation are some of the reasons we choose random forests as one of the baseline methods for this 
project. 

Multitask Learning 

 In traditional single task learning, one trains examples for a single target and a prediction is made based 
on that one target. In contrast, with multitask learning, a mixture of training examples are drawn from many 
related problems (that share the same set of features), and predictions are made for many different tasks at 
once. Assuming the various tasks share some latent shared model, the learner can use the training examples to 
improve generalization.  

The multitask method of learning many similar problems at once to become more effective at solving related 
problems is a type of inductive transfer. Multitask learning can be combined with any machine learning method 
that can generate multiple outputs. One way to translate multiple outputs into probabilities is by using a softmax 
function. A softmax generates probabilities for mutually exclusive numeric outputs by normalizing over the total 
output (for each respective outcome). For example, a bioinformatics multitask learning model could predict 
several mutually exclusive outcomes such as the probability a compound will bind with several respective 
targets, all of which are in the same host (where the compound could only bind with one protein). 

Multitask learning has been applied to many different bioinformatics related problems including genome-wide 
association studies, protein structure, protein-protein interactions [68]. In 2014 Anthony Gitter et al. developed 
MT-SDREM, a multitask learning model for deciphering signaling and regulatory networks. Their experiments 
included the application of SDREM to decipher human auto-immune responses to three flu-stains: H1N1, H5N1 
and H3N2 [68].  

Several years ago there was an extreme sparsity of multitask research in bioinformatics, but this is starting to 
change. For example, in 2014 Geoffrey Hinton’s group won the Merck Kaggle challenge by applying a multitask 
learning strategy to deep network models [48]. The Merck Kaggle challenge involved predicting compound-target 
binding for 15 different assays. Training the QSAR (Quantitative Structure-Activity/Property Relationship) model 
on all 15 tasks at once regularized the model (i.e. prevented overfitting) and forced the system to generalize 
more effectively and learn the latent structures in the data. 

Recent research such as the Stanford-Google MMNT experiments discovered that adding large numbers of 
additional tasks to similar bioinformatics problems combined with deep learning (a type of neural network 
explained below) can scale extremely well. The MMNT experiments used data for 259 targets (mostly proteins) 
and 1.6 million compounds to predict whether unseen compounds would likely bind with the target (active or 
inactive). Each additional target dataset continued to increase accuracy measured as area under curve (AUC) as 
the number of targets increased [1] (Figure 13 displays the MMNT AUC results).  

AUC is an accuracy metric commonly used in binary classification problems. AUC is obtaining by taking the 
integral of an ROC (the receiver operating characteristic) curve. An ROC curve plots the false positive rate (FPR, 
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x-axis) against the true positive rate (TPR, y-axis). The ROC curve shows how a binary classifier performs as the 
discrimination threshold varies. The intuition for AUC is this: given two random examples, one of which is 
positive and the other is negative, what is the proportion of the time one guesses correctly?  
 
One benefit of AUC is that it cannot be easily manipulated like raw accuracy. For example, in a scenario where 
99% of all examples are positive, a classifier could always guess positive no matter what and still achieve 99% 
accuracy. AUC provides a more robust measure of accuracy by preventing this kind of manipulation (in this 
specific example the guess is always positive so the AUC will be 0.50).The high AUC scores achieved (as 
measured verse baseline methods) by the Stanford-Google MMNT team demonstrated that multitask learning 
works well when combined with deep learning.  

Multitask learning is one of the algorithms used in this project due to the strong synergy that can be achieved by 
learning many tasks at once, combined with a deep learning model which is uniquely capable of utilizing the data 
across many tasks. Before we discuss deep learning further, we will begin with the fundamental building blocks 
of neural networks (the perceptron) as well as some of the history and theory to provide context. 

Neural Networks: The Perceptron 

 Artificial Neural Networks (ANNs) are inspired by interconnected neurons in biological systems which 
receive some number of real-valued inputs and translate that into an output. In a very generic sense, this mimics 
the way neurons work in biological systems. In 1943 McCulloch and Pitts [47] created the original mathematical 
model for neural networks based on binary threshold logic (as shown in Figure 14). In 1958 Frank Rosenblatt 
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Above: multitask results from the Google-Stanford MMNT experiments. The Y-axis is AUC, and the X-axis is the number of 
tasks. The AUC accuracy continues to increase as additional tasks are added and the plateau is not in sight [1]. 

Figure 13

Left: a visualization of perceptron math.   Right: the binary threshold identity function.

Figure 14



published his work on one of the first machine learning algorithms, the perceptron [25].  

Many grandiose predictions were made regarding the predictive power of perceptrons, and in 1969, Marvin 
Minsky and Seymour A. Papert wrote a rebuttal which demonstrated many of the limitations of perceptrons [28]. 
Any concept that is not linearly separable cannot be learned by a single perceptron; the XOR example is a 
common example of a non-linearly separable problem. The XOR problem is unsolvable for a single perceptron. 
Minsky and Papert’s criticisms became generally accepted at the time, and perceptron-based models fell into 
disrepute for years. This lead to a major decline in neural network related research for decades. 

In 1986 backpropagation was discovered by Rumelhart, Hinton, and Williams, which allowed neural networks to 
train hidden layers [29]. This debunked the previous limitations of perceptron-based systems as outlined by 
Minsky and Papert. Figure 14 (on the left-side) shows the math in a perceptron which is somewhat similar to 
logistic regression, except the activation function is a binary threshold [47]. The identity function of the binary 
threshold is shown in Figure 14 (on the right-side); the result can only be {0, 1}. During training the output o is 
compared to the expected target value y.  

The perceptron learning update rule is as follows:  
1. Randomly initialize weights. 
2. Calculate the output for the given instance using the formula in Figure 14. 
3. Update the weights: 

Perceptrons are used as building blocks for much larger, more complicated neural networks. Many different 
kinds of models can be built with perceptrons; the behavior can be modified depending on the type of activation 
function used. Some common activations include: hyperbolic tangents, ramp functions, step functions, Gaussian 
kernels, and rectified linear units (ReLU). A rectified linear unit (ReLU) creates a weighted sum of the linear units 
and returns the total if it is greater than zero; otherwise the result is 0. Some argue that ReLU are more 
biologically plausible than the more widely used sigmoid activation. 

Artificial Neural Networks 

 The power of neural networks lies in their ability to make multiple non-linear transformations through 
many layers of neurons which can represent complex and increasingly abstract features (as more layers are 
added and as layers are made wider by increasing the number of neurons). By adding many hidden layers of 
varying widths to a neural network, the model can learn increasingly complex and abstract representations. 
However, in order to use hidden layers one must find a way to determine how to assign error attribution and 
make corrections working backwards through the neural network. This backwards propagation of errors is known 
formally as “backpropagation” [29].  

Although the conceptual foundation of backpropagation was discovered in 1963, it was not until 1986 that Hinton 
et. al discovered a way for this algorithm to be applied to neural networks [29]. Backpropagation made it possible 
to overcome the representational limitations of perceptrons by adding additional hidden input layers (Figure 15 
displays a sigmoid neural network with a single hidden layer). During the process of backpropagation, gradient 
descent is used to find the minimums in the error surface caused by each respective neuron when generating a 
corresponding output. In order to use gradient descent and minimize errors, the activation function must be 
differentiable, which is one reason why sigmoid activation functions are a common choice. 

Gradient descent is an iterative process that is used to find where the error surface descends most steeply. 
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Gradient descent then takes an iterative step in that direction by updating the weights. This is done by 
progressively working backwards through the model (figures 16 and 17) through subsequent hidden layers, 
moving towards the original inputs. One problem with gradient descent is that the error signals become 
progressively more diffused as the signal goes back through each progressive hidden layer. This is because, as 
the signal goes deeper into the model, an increasing number of neurons and weights are associated with a given 
error. This makes it difficult to train more than two hidden layers efficiently. Although hidden layers three levels 
and beyond can be trained, by the time a good convergence is reached in the deep layers, the layers closest to 
the output are likely to be overtrained. 

Deep Learning 

 In the last decade deep learning has become the dominant method for speech and audio recognition. In 
more recent years deep learning has also shown promise in many other disciplines. Some examples include: the 
analysis of particle accelerator data, predicting the activity of potential drug molecules, reconstructing brain 
circuits, and predicting user movie preferences (e.g. Netflix [69]). Deep learning is poised to leverage a 
combination of multitask learning, automatic feature extraction, and progressively more abstract concepts (e.g. 
feature hierarchy) which make it an ideal choice for many learning tasks beyond audio and visual recognition. 

Deep learning is part of a family of machine learning algorithms that transform inputs and reconstruct them into a 
distributed representation. In a distributed representation, many concepts are associated with many neurons and 
many neurons are associated with many concepts. By using good random initialization, symmetry is intentionally 
broken so that many different features will be learned by the neurons in the various layers of the system; this is 
referred to as automatic feature detection. Each hidden layer becomes the input into the next layer of the system 
and non-linear transformations can be applied which allows a system to progressively learn increasingly abstract  
and deep features (which is why it is called “deep learning”) (Figure 16 illustrates how a deep neural network 
learns increasingly complex and abstract features by adding additional layers).  

Automatic feature detection is one of the most significant benefits of a deep learning system. A traditional 
machine learning model must be carefully constructed with the right features in order to generalize well (a 
process referred to as feature extraction or feature engineering). This can be extremely time consuming and 
requires domain expertise, which is not practical long term as data in many fields continues to grow at an 
exponential pace. For example, in 2014 Hinton’s group won the Merck Kaggle challenge without any feature 
engineering (this is also mentioned in a different context in the multitask learning section above) [48].  
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A single layer neural network using sigmoid activation functions. Input units are on the far left and sigmoid activation 
functions perform non-linear transformations on the inputs [43].

Figure 15



Traditional machine learning models such as decision trees, SVMs, and k-means or k-nearest neighbor make 
intuitive sense and generally create models that humans can easily understand. One problem with deep learning 
is automatic feature detection can discover features that are difficult to decipher. Another issue with deep 
learning is complex, deep and wide neural networks with many neurons often have extreme memory and 
processing power requirements. This can potentially create scalability problems in systems where millisecond 
response time is critical for a good user experience.  

Some of the speed issues with deep learning can be mitigated by using CUDA capable software with high power 
Nvidia graphics cards which can run millions of matrix computations in parallel with extremely high speed. Most 
of the mainstream deep learning frameworks support this. Some of the leading deep learning frameworks 
include: Torch (Facebook), Theano (Open Source Community), and DL4J (Skymind). Although deep learning is 
just one type of machine learning, it is so completely different in its computational requirements and setup that it 
requires different frameworks entirely. This may change in a few years, but as of this writing, it seems none of 
the mainstream machine learning frameworks such as Weka or scikit-learn support deep learning. 

Deep Learning: Optimization 

 There are a number of ways to accelerate the deep learning process, reduce overfitting, and converge 
on more optimal results. Unsupervised pre-training, weight decay and dropout are common regularization 
methods that help prevent overfitting. During dropout a fixed proportion (e.g. 0.25) of neurons are randomly 
selected to be temporarily excluded from the model. This has the effect of simulating many different (heuristically 
infinite) architectures during training; this prevents co-dependency among neurons and regularizes the model 
(prevents overfitting) [70]. Unsupervised pre-training (explained below) provides several benefits including: better 
weight initialization, more local optima, and faster training. Nesterov’s accelerated gradient descent or other 
classical momentum methods can also help gradient descent methods reach convergence in less training 
epochs. Finally, annealing the learning rate through step decay or exponential decay can help the model settle 
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An example of how a deep learning model can learn progressively deeper hierarchical features. The lowest layers learn 
very simplistic features and provide inputs to the higher layers which learn more abstract features. In this image, the first 
hidden layer only detects edges or other low level details. The second layer detects more abstract features such as eyes, 
mouths and noses. In the final layer, abstract representations of various faces are reconstructed for facial recognition [51].

Figure 16



into a deeper, narrower part of the loss function. 

Pre-training, discovered by Hinton et al. in 2006 is a fast, greedy, algorithm that uses an unsupervised layer-wise 
approach to train a deep neural network one layer at a time [44]. In the case of a DBN, each layer is trained with 
contrastive divergence in an unsupervised manner and each layer becomes the input for the next layer during 
the process. The process for a deep autoencoder is the same except each layer is trained with with a standard 
sparse autoencoder algorithm (autoencoders are discussed in the next section). After the pre-training phase is 
complete, a slower fine-tuning process, such as stochastic gradient descent (SGD), is used to train the model. 
With the pre-training approach, the model has already learned the features before backpropagation begins. In 
this setting, backpropagation is only used on the two outer-most layers to fine-tune the parts of the model which 
are relevant to the current classification task. 

Although unsupervised pre-training is considered “obsolete” [71], it is still required for any deep learning 
architecture that uses activation functions that suffer from gradient-based problems (such as sigmoids). For 
example, the sigmoid non-linear smoothing function has an increasingly flat gradient as numbers grow towards 
positive or negative infinity, and numbers towards the middle of the sigmoid (0.5) have steep gradients. During 
the SGD backpropagation process, sigmoid activations are not a problem for a one or two layer model. However, 
once the signal propagates through three layers or more, it tends to explode or vanish, distorting the data and 
resulting in a model that fails to generalize well. Thus, with three or more layers of SGD backpropagation the 
model can get caught in plateaus and local minima. Greedy unsupervised layer-wise pre-training bypasses this 
problem by training each layer directly. 

ReLU-based neural networks do not require pre-training since this type of activation is not subject to the 
vanishing / exploding gradients problem. Typically, dropout and early stopping are enough to keep a ReLU-
based architecture regularized [71, 72].  Regardless of whether pre-training is applied, good random initialization 
remains a critical step in the process because it breaks symmetry in the model increasing the odds that no two 
neurons will learn the exact same thing, which is important for automatic, distributed feature-detection.  If a 
neural network is initialized poorly, data might not flow through the network to the final layers and the learning 
model is more likely to fall into local minima and generalize poorly. 

Neural Networks: Deep Belief Networks 

 A Boltzmann machine is an energy-based model proposed by Hinton et al. in 1985 [53]. A Boltzmann 
machine works based on the concept of thermal equilibrium; everything is defined in terms of the joint 
configurations between visible and hidden units. In a Boltzmann machine, all visible units are connected to all 
hidden units, but the hidden units are also connected to each other. Updates are performed through respective 
positive and negative phases. The positive phase finds configurations that work well and updates their energies, 
while the negative phase unlearns spurious minima. During the positive phase, a set of particles is saved for 
each training case and each particle contains the current value of a hidden unit. During the negative phase, a set 
of fantasy particles are stored where each has a global configuration. The simple mean field approximation is a 
heuristic that allows updates with probabilities instead of binary states. The fundamental problem with Boltzmann 
machines is the update algorithm is very slow, and they were rarely used in practice. 

In 1998 Hinton et al. discovered the restricted Boltzmann machine (RBM) which is almost the same design as 
the Boltzmann machine, except there are no connections between hidden units. The restricted Boltzmann 
machine is a bipartite graph where each visible unit is connected to each hidden unit with undirected 
connections. Hinton discovered that by clamping the data vector, thermal equilibrium could be reached in a 
single step through a process he calls contrastive divergence. Although we cannot evaluate the energy function 
directly, contrastive divergence can estimate the gradient of the energy function regardless.  

The contrastive divergence shortcut has theoretical problems, and although it works like maximum likelihood 
approximation in practice, it does not actually compute the log likelihood of the gradient. The key benefit of this 
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shortcut is it allows all the updates to be performed in parallel which makes the process vastly more efficient 
than the original Boltzmann machine (i.e. far less computational complexity). This was an important discovery 
because it made the RBM algorithm computationally efficient enough to be used in a practical setting. In fact, 
RBMs are becoming widespread in practice and in 2009 RBMs were part of the ensemble that won the 1 million 
USD bounty in the Netflix Challenge. 
 

In 2006 Hinton et al. discovered a way to stack RBMs and train deep belief networks (DBNs) [44]. A DBN is 
probabilistic generative model with multiple layers of stochastic latent variables. Typically, the latent variables 
have binary values and are referred to as feature detectors (or hidden units). A DBN is constructed with an input 
layer followed by a number of stacked hidden layers, each of which is an RBM (displayed in Figure 17). Each 
subsequent layer becomes the input for the next layer. The weights are randomly initialized to break symmetry 
and help the hidden units learn many different features. Greedy layer-wise unsupervised pre-training with 
contrastive divergence is used to help the DBN reconstruct the inputs for feature detection.  

Figure 17 [45] illustrates the unsupervised pre-training process which begins with the input layer which has some 
form of training data (e.g. pixels from an image). The weights of the first RBM (hidden layer h1) are then trained 
with contrastive divergence to reach a state of energy equilibrium based on the input data. Then the hidden 
activity pattern (the resulting binary states) of h1 becomes the input for the next hidden layer h2, and contrastive 
divergence is applied again. This process continues until the final hidden layer is trained (which is h3 in this 
example). This results in setting the weights to more suitable starting positions before the fine-tuning process 
starts. 

Subsequently, supervised training with fine-tuning (e.g. backpropagation) is applied to complete the training 
process. Unsupervised pre-training speeds up backpropagation because it allows the process to start with 
sensible feature detectors that are already tuned for the discrimination task at hand. This means 
backpropagation only needs to perform a local search from a reasonably good starting point. The unsupervised 
pre-training detects many features, some of which might not be useful for the discriminative task for which the 
model will be used. The fine-tuning process does not discover any new features; it only modifies the features 
slightly to correctly determine the classification boundaries. 

Adding more RBM layers to the model enables the detection of progressively more abstract (deeper) features. 
DBNs can detect very complex and deep hierarchical features and can often provide very accurate predictions at 
the expense of a model that might not be conducive to human understanding. Currently, DBNs are extremely 
popular since they learn much faster than traditional neural networks. For example, many recent Kaggle 
competitions were won with DBNs. Also, Facebook recently launched a DBN research center and Google 
recently switched to DBNs for Android speech recognition.  
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A deep belief network (DBN) has an input vector x with RBM layers h1, h2, h3 stacked one on 
top of the other. Each layer becomes the input for the next layer [45].

Figure 17



Neural Networks: Deep Autoencoders 

 Sparse autoencoders are typically used to deconstruct data into a compressed, distributed 
representation (dimensionality reduction) and then reconstruct the data (Figure 18 displays an autoencoder). In 
terms of structure, an autoencoder is the same as a multilayer perceptron except that there are as many outputs 
as there are inputs. An autoencoder (also called a denoising autoencoder) has three layers. The first hidden 
layer (the encoder) transforms the data into a sparse representation by converting coordinates in the input space 
to coordinates along the manifold. The second hidden layer (the decoder) inverts the mappings and reconstructs 
the input vector. When the training is complete the system has learned to map the data in both directions.  
 

An autoencoder uses backpropagation to implement principal components analysis (PCA) in a somewhat less 
efficient way. The theory of PCA is that high dimensional data can often be represented in far less dimensions.  
This works best when data lies near a linear manifold in high dimensional space. If the manifold can be 
discovered, the points can be projected onto it, discarding information in directions orthogonal to the manifold. 
As long as there are only minor variations in the data orthogonal to the manifold, very little information is lost.  
Figure 19 displays an elongated Gaussian with a blue line that represents the linear manifold with the most 
variation. If all the points are projected onto the blue line, the information lost will be the sum of the 
unrepresented directions of the squared differences of the data-points from the mean.  

In other words, the data was only lost in the orthogonal directions; the rest of the data was preserved. Standard 
principal components methods allow one to efficiently take n-dimensional data and discover the orthogonal 
directions that have the least variance and drop those, thus creating a more compressed version of the data. 
Although doing this with a neural network is less efficient, the advantage is the method can be generalized to 
deep neural networks where the code is a non-linear function of the output. The advantage of the non-linear 
approach is it gives the model the capability to handle curved manifolds in the input space.  

Deep autoencoders were conceptualized in the 1980s, but due to existing training methods at the time these 
models could not significantly outperform PCA. In theory, encoding should be fast, but in practice it was too 
difficult to optimize deep autoencoders using backpropagation.  
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Above: a visualization of how an autoencoder transforms inputs into a compressed representation in the first hidden layer 
and then reconstructs the input vector [46].

Figure 18



The first successful deep autoencoders were not created until 2006 when Hinton and Salakhutdinov discovered 
the same pre-training methods developed for deep belief networks could be applied to stacked autoencoders 
[54]. A deep autoencoder enables non-linear two-way mappings from the original input into a dimensionality-

reduced version and back into a reconstructed input vector. 

The Hinton et al. deep autoencoder used a 784-1000-500-250-30 pattern where 784 pixels from handwritten 
MNIST digits were transformed through three hidden layers (with 1000, 500, and 250 neurons respectively) into 
a compressed encoding of 30 real numbers. The same pattern was used in reverse (with three hidden layers of 
250-500-1000) to reconstruct the image. The reconstructed digits look like slightly blurry versions of the original 
digits with some of the minor defects missing (from the original images). This was a significant discovery 
because for the first time a deep autoencoder clearly outperformed PCA [54]. 

Experimental Evaluation 

 The long term goal of this research project is to assist the University of Wisconsin-Madison Small 
Molecule Screening Facility (SMSF) by improving the SMSF’s virtual enrichment process from 10 fold up to 40 
fold or greater. As explained in earlier sections, deep learning is ideal for extracting deep hierarchical feature 
representations and multitask learning has demonstrated evidence of massive scalability. The ensemble of these 
two methods has proven effective for solving some recent bioinformatics problems. The success of various 
multitask deep learning experiments such as Stanford-Google MMNT [1] and Hinton’s Merck Kaggle victory [48] 
inspired us to replicate their success by creating our system based on these algorithms. 

Our plan was as follows:  
1. Collect a massive amount of public bioassay data. 
2. Create baselines with traditional machine learning methods. 
3. Build multitask deep learning models. 
4. Run experiments to confirm we can achieve the relative accuracy levels of past experiments. 
5. Extend and enhance the models to provide a practical solution to the SMSF.  

The Datasets 
 In order to replicate past experiments we required four large public cheminformatic datasets: PCBA, 
Tox21, MUV, and DUD-E (Table 1). These four combined datasets contain 1.6 million compounds and 258 
different targets (mostly, but not all protein). The PubChem BioAssay Database (PCBA) is the largest dataset 
with 5000 protein targets and 30 gene targets [55]. The 128 protein targets were selected from PCBA due to the 
high number of training samples in those respective datasets.  

The Maximum Unbiased Validation (MUV) dataset is designed to help prevent common pitfalls in virtual 
screening and provides the results for 17 very challenging targets [56]. The Tox21 dataset contains an analysis 

�21

Above: a two dimensional elongated Gaussian with a blue line through the direction of greatest variance. The red line is 
orthogonal to the linear manifold and is the direction of least variance. The distance from the green point to the orange 
point represents the information lost on a single training case when dimensionality reduction is applied.
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of chemicals screened against 12 targets through the federal toxicity testing of the 21st century [57]. DUD-E 
provides useful decoys designed to gauge the accuracy of virtual docking programs [58]. All of these datasets 

provide a binary result for each compound {inactive, active} or {0, 1}, where active means the compound is likely 
to bind with the target and inactive means the compound is inert. 

The rationale behind gathering targets from a plethora of public datasets was to amass a collection of data that 
could leverage the power of both deep learning and multitask algorithms. Given a set of related tasks, a 
multitask dataset has the potential for higher accuracy since the learner is forced to detect latent structures in the 
data which are true across all tasks. This makes overfitting more unlikely and provides features that might not be 
learnable for a single task. In order for the learner to discriminate, we converted all the chemical compounds into 
extended connectivity fingerprints (ECFP4). The ECFP4 fingerprinting algorithm is designed to capture features 
relevant to molecular activity which is ideal for drug discovery [59].  

The ECFP4 algorithm assigns numeric identifiers to each atom, but not all numbers are reported. The process 
can be viewed as a form of lossy compression since slightly different, but very similar molecules can both be 
assigned the same numeric identifiers. Increasing the number of bits reported can reduce the chances of a 
collision, but there are also diminishing returns in the accuracy gains obtainable with longer fingerprints (e.g. 
1024 bit, 2048 bit, or larger fingerprints can be used). This and computational complexity concerns were the 
pragmatic reasoning that resulted in our decision to use 1024 bit ECFP4 fingerprints. 

It is possible an active molecule could map to the same ECFP4 fingerprint as an inactive compound which 
creates some risk for artificial enrichment (this could negatively impact AUC). There was also significant known 
overlap between the datasets as well. For example, PCBA data is the primary source of MUV data. Based on our 
analysis there was a degree of overlap in the datasets where distinct molecules were mapped to the same 1024 
bit ECFP4 fingerprint. The exact extent of the overlap between datasets and actives or inactives may need to be 
explored further. 

Our datasets distribution is heavily skewed towards inactive compounds: only 1.37% of the 37.9 million training 
examples are active (about 0.5 million). In order to prevent learning problems in our models due to the biased 
active-to-inactive ratio, we oversampled the active compounds and provided stratified samples to our learning 
models. This helped prevent false negatives and improved the overall AUC (area under curve) scores. Although 
recent research has shown that AUC might be an imperfect measure, it is still more robust than using a measure 
such as accuracy percentage.  
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The table above displays a summary of the training data used in our experiments.

DATASET TARGETS ACTIVES INACTIVES

Maximum Unbiased Validation (MUV) 17 510 255,000

PubChem BioAssay Database (PCBA) 128 472,440 35,631,830

Toxicology in the 21st Century (Tox21) 12 7,121 90,944

Database of Useful Decoys: Enhanced (DUD-E) 102 40,482 1,414,421

Totals 259 520,553 37,392,195

Table 1



For example, one could achieve 98.63% average accuracy across all models if the model was hard-coded to 
always predict negative (since only 1.37% of the training examples are inactive). Using AUC as our accuracy 
measure prevents this kind of manipulation and provides more statistically significant result. Furthermore, k-fold 
average AUC was necessary to contrast our benchmarks with previous work [1] (Figure 20 illustrates examples 
of typical AUC curves). 

Training, Validation and Test Sets 

 We measure the performance of each machine learning method with average AUC scores from stratified 
k-fold cross validation. Two files were built for active and inactive compounds respectively for each of the 259 
targets. Oversampling was done in memory after the data was read from disk to provide a more balanced ratio of 
active to inactive training examples (and to prevent excessive bias for negative predictions). Each file contained 
a row with the 1024 bit ECFP4 string for the target compound, a binary {0, 1} to indicate if the target was active, 
and the native ID of the compound in the original dataset. Each file was divided into 5 folds, where 4 folds were 
used for training and 1 fold was held out for testing.  

The fold ID for each training vector was determined in advance (after shuffling the data). We did this to assure 
each machine learning model was training and testing on the same folds to reduce the chances for inflated or 
deflated AUC scores for any particular learning algorithm. In the case of our deep learning models, 3 folds were 
used for training, and the other 2 folds were used for validation and testing respectively. The validation fold was 
crucial for correctly training the deep learning models. We initially attempted to run our fine-tuning validations on 
test data, but this consistently resulted in overtraining and poor AUC scores. Using held-out validation folds 
obviated this issue and resulted in higher accuracy because the early stopping mechanism was able to detect a 
problem and terminate training. 

A separate dataset was built for training multitask learning models. Distinct multitask datasets were built for 
PCBA, MUV, Tox21 and DUD-E. Multitask mini-batches were created which contained data from all tasks in each 
respective dataset. For example, a DUD-E multitask dataset was generated using only data from DUD-E tasks, 
drawing equal proportions of training examples from each respective task. The same approach was used for 
MUV, and Tox21. In the case of PCBA, only five tasks were used (although we plan to generate a dataset for all 
128 PCBA jobs in the future). In the future we will create a massively multitask dataset which includes all 259 
targets.  

In order to make our multitask datasets practical, we decided to include the truth set for each training example 
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Above: an example of an ROC curve. AUC is the area under the ROC curve [60].

Figure 20



across all datasets. To do this, one hashmap was generated for each dataset respectively (PCBA, MUV, DUD-E 
and Tox21) where the first column contained the 1024 bit string identifier for the compound, and subsequent 
columns contained the activity level for the compound of each respective target. Column identifiers (IDs) were 
predetermined based on the alphabetical ordering of each target name. Data was then inserted into each row 
with the global truth labels for each training example (which was already stored in the universal hashmap for that 
multitask job). The data in a given row followed this pattern where {0 , 1} indicates inactive / active for each 
target: 

<1024 bit string> 0 0 1 0 … 0 1 0 0 

Multitask datasets were built for PCBA, MUV, Tox21, and DUD-E. The complete set of actives and inactives for 
each task were sampled evenly and with replacement. For example, Tox21 has 12 tasks, so each task would 
represent 1/12th of the training data. Mini-batches were generated where each mini-batch was stored in a file 
containing about 10,000 training examples, where half the examples were active and inactive respectively. Each 
task in the mini-batch had an equal proportion of training examples as well. We discovered that when large 
batches of data were loaded into memory as a matrix, this would often cause the entire server to crash. Storing 
10,000 examples per file solved the matrix memory by limiting the size of a full batch (each file was 10.5mb; the 
files that caused the memory constraint problems were 300mb). Mini-batches were created by splitting files with 
10,000 examples into sets of 100. Batch files of 10,000 examples each were produced drawing from all tasks 
evenly with replacement. 

Experiment Design 

We chose logistic regression and random forests as our baseline single task machine learning models. These 
were the same baselines used in the MMNT experiments (Figure 21). We used scikit-learn to implement logistic 
regression, random forests and to calculate AUC. Tuning was performed on these learners to assure they 
performed with reasonably high AUC. The original MMNT project experimented with 10 or 20 different types of 
deep neural networks. We decided to only replicate the highest performing neural network architectures: the 
pyramidal single task neural network (P-STNN) [2000, 100] and the pyramidal multitask neural network (P-
MTNN) [2000, 100]. One key difference between the MMNT experiment and our experiment is the chosen 
activation functions. MMNT used ReLU activations which require no pre-training. In contrast, we chose sigmoid 
activation units with pre-training, with plans to use ReLU activations instead if we encountered sub-par AUC 
results. 

A “pyramidal” neural network refers to a multi-layer feed-forward network which expands wider in the first layer, 
eventually pushing into a very narrow final layer (i.e. roughly in the shape of a pyramid). The narrow final layer 
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Above: results from the original Stanford-Google MMNT project [1]. This project report describes phase 1 of our project 
which was to replicate these results with our own multitask deep learning system. 

Figure 21



then feeds into a single threshold function for single task neural networks or a softmax layer for multitask neural 
networks. In the next section we will describe our deep neural network design in more detail. 

Pyramidal Deep Belief Networks: Multi and Single Task 

 The Stanford-Google MMNT experiment was not clear on which deep learning algorithm MMNT used. 
Both deep autoencoders and deep belief networks (DBNs) are viable candidates and both have similar 
architecture (as explained above in earlier sections of this report). We chose to implement Deep Belief Networks 
with plans to possibly explore deep autoencoders after the summer-term project (which is beyond the scope of 
this report). Since our plan was to deliver a practical solution with extremely high AUC, we decided we should 
use an existing library to implement our DBN-based P-STNNs and P-MTNNs. 

Building high performance, computationally efficient deep learning systems is a non-trivial task. Hence, deep 
learning is completely different from traditional machine learning algorithms in both computational complexity 
and system architecture. At the time of this writing deep learning is not available in standard libraries such as 
Weka, scikit-learn, and Orange. However, there are a large number of specialized deep learning libraries, three 
of which were potentially compatible with our need to massively scale: Torch (Facebook), Theano (community), 
and DL4J (Skymind). Daily commits and bug-fixes from many contributors and other indicators suggest Theano 
has a strong vibrant community, actively extending and improving the codebase. After careful deliberation 
Theano was chosen due to the combination of excellent documentation, high performance (Nvidia CUDA 
compatibility for massive parallel GPU-based computations), community support, and high activity on Github. 

Theano has a difficult learning curve and generating our own custom models based on this library was a non-
trivial task. We designed our DBN pyramidal single task deep belief networks (P-STNN) using Theano with the 
following layer pattern: 1024-2000-100. The input layer feeds into a hidden layer (h1) with 2000 sigmoid neurons 
and then the next hidden layer (h2) compressed the output into 100 neurons. One key difference with our 
experiments is we used Sigmoid activations (instead of ReLU). After initializing random weights, greedy, layer-
wise unsupervised pre-training with contrastive divergence was applied to bring the neural network to an energy 
equilibrium (sigmoid-based architectures require pre-training). Backpropagation with stochastic gradient descent 
(SGD) was then used to fine-tune the output to make classifications based on the discovered features that were 
most significant for our task. As with the baselines, scikit-learn utilities were used to calculate the AUC results.  

Experiment Results 
 The pyramidal multitask neural network [2000, 100] (P-MTNN) part of our project is still in progress and 
completion is not expected until later in August 2015. Computational resources have continuously been a major 
bottleneck in our experiment since our dataset is truly “massive” (40GB) and deep learning has substantial 
computational requirements. Iterating through experiments, and determining the right settings has been a 
monumental ask at times and we could not have produced results without the generous assistance of the 
Simulation Based Engineering Laboratory (SBEL) and HTCondor. To an extent, the benefit of automatic feature 
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PCBA MUV Tox21 Overall

Logistic Regression (LR) 0.81 0.77 0.80 0.79

Random Forests (RF) 0.78 0.68 0.85 0.73

P-STNN [2000, 100] 0.84 0.80 0.82 0.82

LR, RF, and P-STNN AUC results were very similar to those of the MTNN experiments, except for P-STNN PCBA. 
Notably, our 1 k-fold of P-STNN outperformed the MTNN experiments.

Table 2



detection is offset by the difficulty in finding the right training settings. 

Aside from P-MTNN, the rest of our experiments are complete with one exception. Our 259 single task P-STNNs 
only ran on a single fold configuration due to time and computational complexity limitations. Our final 5-fold P-
STNN results may vary slightly from these initial results. Based on experience and the large number of tasks 
(259), it is unlikely the results will vary significantly from our present findings. 

Although our random forests had spotty performance, our logistic regression and P-STNN results substantially 
outperformed the Stanford-Google MMNT results (compare Figure 21 to Table 2). We also matched the MMNT 
results with DUD-E since all our baselines and P-STNNs achieved 0.99 AUC with that dataset. Since DUD-E 
provides no point of differentiation between our machine learning methods, or between our project and the 
MMNT experiment, it is not reported in the table. Logistic regression was not a focal point for us, and we do not 
know why this baseline outperformed MMNT by such a large margin. Further investigation is required to 
ascertain the reasons for this. 

The P-STNNs from the MMNT experiment performed roughly the same as the logistic regression (LR) and 
random forest (RF)  baselines. In fact, only the final multitask neural network results (P-MTNNs) outperformed 
the best baselines. We were pleasantly surprised that our DBN-based P-STNNs outperformed all the other 
baselines achieving 0.82 AUC overall compared to RF at 0.73 and LR at 0.79. Random forests slightly 
outperformed our P-STNNs on the smallest dataset Tox21 with 0.82 AUC which is 0.03 higher than P-STNNs.  

Why did our single pyramidal deep belief networks outperform the MMNT single task deep networks? One 
possible reason is the MMNT experiments omitted pre-training. As explained above, our experiment used pre-
training, a powerful regularizer that helps avoid local minima and prevents over-training. In contrast, the only 
regularizer used in the MMNT experiments was 0.25 dropout in both the P-STNNs and P-MTNNs (most likely 
early stopping was used as well, although this is not mentioned in the MMNT paper). While pre-training is not 
‘necessary’ in training ReLU-based architectures [71, 72], this does beg the question. It is also possible that 
sigmoid activations are more conducive to this problem. However, many claim ReLU units are more realistic for 
biological systems. 

There is another possible reason for the performance discrepancy: the ultimate focus of MMNT was not P-
STNNs; instead, the focus was on proving multitask learning can scale in a drug discovery context. In contrast, 
our focus is to leverage both the power of deep learning and multitask algorithms to maximize the potential for 
improved enrichment. More investigation is required for us to understand the performance differences, although 
perhaps it is too early for a final conclusion (it is possible that our performance discrepancies will disappear once 
we run the remaining folds). 

Achieving Higher Performance With DBNs 
While training our deep belief networks, we frequently experienced problems where too many neurons were set 
to “off” positions (zeroed out) and the network could only predict negative results (resulting in 0.50 AUC). This 
often occured when the pre-training learning rate was set too high. Inherently, the “greedy” part of unsupervised 
pre-training is an indicator that a powerful learning method is being used. Greedily applying layer-wise 
contrastive divergence to bring each of the respective layers to an equilibrium is vastly more aggressive than the 
fine-tuning process of SGD. This is somewhat common knowledge to an extent. As evidence, the Theano default 
settings use a pre-training learning rate of 0.01 and a fine-tuning learning rate of 0.1 (the pre-training rate is 
1/10th the fine-tuning rate). The default pre-training learning rate was completely wrong for our experiments, and 
a number of iterations were required to discover more ideal settings. 

When predicting protein-ligand binding in the context of PCBA, MUV especially, a gentle pre-training rate must 
be used to avoid breaking the model. We found that just 10 epochs at the absurdly low pre-training learning rate 
of 0.0000003 was gentle enough to never break our P-STNN DBNs. This might not be the ideal number of pre-

�26



training epochs but 10 epochs at the low learning rate worked well enough. These settings were the parameters 
in our best P-STNN performance.  

In future experiments it would be interesting to see how the same learning rate would perform with 100 or 1,000 
epochs of pre-training on the various datasets. Also, at least with our experiments, pre-training was a necessity; 
when we attempted to bypass this step, our DBNs generalized poorly.  In contrast to pre-training, the fine-tune 
learning rate for SGD was not nearly as sensitive. The rate of 0.05 worked pretty well, and is not so distant from 
the default Theano setting of 0.1. In future experiments, we may try more optimizations such as weight decay, 
dropout and Nesterov momentum. 

Conclusions 

 Our goal was to explore the power of multitask learning combined with deep neural networks. Our single 
task baselines and DBNs (P-STNN [2000, 100]) performed well. However, we still need to obtain multitask DBN 
(P-MTNN [2000, 100]) results; this is critical in order for us to validate our hypothesis. Substantial progress was 
made on the project. The bulk of the work is now complete including data collection, cleaning and preparation for 
multitask and single task models, as well as creating and testing the various machine learning algorithms 
required to complete our experiments. We have also achieved strong performance results with our single task 
deep belief networks, which marks an important progress milestone. 

In terms of system architecture, the P-MTNN is very close to the P-STNN design. The key difference is the P-
MTNN must learn more slowly since it must absorb an order of magnitude more training examples from diverse 
training sets. We have built a strong foundation for this experiment by creating accurate P-STNN learners and 
accurate baselines. We have also improved our depth of knowledge and experience with deep learning. Notably, 
we made a few interesting discoveries regarding ideal learning rates for pre-training the public datasets PCBA, 
DUD-E, Tox21 and MUV (something not discussed by the MTNN project since they did not need pre-training).  

Many aspects of the deep learning experiments were non-trivial to set up since little is published on the practical 
details that are often required with bleeding edge technology. Once we obtain our final P-MTNN results we can 
begin the search for ways to apply our findings towards improving the SMSF’s enrichment process. These 
improvements may include ensemble methods that combine existing enrichment approaches such as AutoDock 
Vina with deep learning, or we could add more training data to our system from public sources like ChEMBL to 
see if we can determine the point where multitask benefits reach a plateau.  

Michael Newton and his UW Madison research team are also working concurrently on ways of clustering 
compounds and proteins to discover shared latent properties. Cluster-based multitask job amalgamations could 
could potentially result in better predictions for protein-ligand binding activity. We could also extend this project to 
combine fingerprints and bioactivity features in ways that would allow us to extend the multitask deep belief 
network to make predictions on new unknown targets which are not in the existing datasets.  
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