
Massively Multitask Deep Learning
for Drug Discovery

By

Jason Feriante

A project submitted in partial fulfillment of the requirements

for the degree of

Master of Science in Computer Sciences

at the

University of Wisconsin-Madison

2015

Advisor Signatures:

Anthony Gitter

Jude Shavlik

Table of Contents

Abstract 1 ...
Acknowledgements 1 ...
Introduction 1 ...
Bioinformatics: History 2 ...
Bioinformatics: Practical Applications 3 ...
Bioinformatics: Experimental Approaches 4 ...
High Throughput Screening (HTS) 4 ...
Artificial Enrichment: Docking 4 ..
Artificial Enrichment: Machine Learning 4 ...
Artificial Intelligence: History 5 ..
Machine Learning: Introduction 7 ...
Artificial Enrichment: Machine Learning 8 ...
Fuzzy Expert Systems 8 ...
Genetic Algorithms 9 ...
Inductive Logic Programming 10 ..
Logistic Regression 10 ...
Decision Trees 11 ...
Random Forests 12 ...
Multitask Learning 13 ..
Neural Networks: The Perceptron 14 ...
Artificial Neural Networks 15 ..
Deep Learning 16 ...
Deep Learning: Optimization 17 ..
Neural Networks: Deep Belief Networks 18 ...
Neural Networks: Deep Autoencoders 20 ..
Experimental Evaluation 21 ...
The Datasets 21 ..
Training, Validation and Test Sets 23 ...
Experiment Design 24 ..
Pyramidal Deep Belief Networks: Multi and Single Task 25 ..
Experiment Results 25 ...
Achieving Higher Performance With DBNs 26 ...
Conclusions 27 ...
References 28...

Abstract
 The University of Wisconsin-Madison Small Molecule Screening Facility (SMSF) performs research to
discover compounds that bind with specified targets (usually proteins). Due to time and cost constraints, the
SMSF is limited to real screening on a very small pool of candidate compounds with high throughput screening
(HTS) methods. Our research team proposed to enhance or replace current virtual enrichment methods with
massively multitask deep learning to substantially increase the odds of HTS success. Our challenge was to first
create a working model and then to extend that model to provide an ongoing predictive solution for the SMSF.
During this summer term project the first phase was completed, which involved the replication of past
experiments with deep learning models and other baseline methods. This project report describes my research
efforts and experimental results.

Acknowledgements
 During the course of this project I had the opportunity to work with some great academic minds:
Professor Anthony Gitter (Ph.D), Spencer Ericksen (Ph.D), and fellow researcher Vaidhyanathan Venkiteswaran
(“Vee”). Thank you Professor Anthony Gitter for your brilliant, and patient guidance as well as your support in
making this project a reality. Thank you Vee for recruiting me to work on this project, as well as your many
creative and insightful solutions you have come up with in response to many of the difficult problems we faced.
And to Spencer Ericksen (Ph.D), thank you for helping us understand the problem domain as well as your
substantial work in collecting all the various required datasets and in generating the of ECP4 fingerprints. And
finally, to Professor Jude Shavlik (Ph. D) thank you for your assistance in reviewing this project.

Introduction
 The University of Wisconsin-Madison Small Molecule Screening Facility (SMSF) is tasked with drug
discovery, which requires the identification of molecules that bind non-promiscuously with specified protein
targets. The lab faces increasing cost challenges as the ratio of drugs discovered annually per billion dollars
spent has declined by nearly 50% per year since the 1950s [2]. While large pharmaceutical firms such as Merck
and Pfizer continue to spend a fortune on brute force high-throughput screening (HTS), this is not a viable option
for the SMSF and many other academic screening facilities.

Due to time and cost constraints, the SMSF is limited to screening a relatively small pool of candidate
compounds with HTS methods. Among the millions of molecules that are potentially viable and safe for humans,
only a few are in fact good candidates for any given target protein. Due to the systemic problems with traditional
drug discovery, new methods must be found to increase the declining efficiency of traditional approaches. One
possible solution to this problem is virtual screening for increased enrichment levels. Enrichment refers to
increasing the density of good targets in a pool of candidates as opposed to a random selection baseline.

“In silico" (Latin for “in silicon” [49]) refers to running a simulation on silicon semiconductors as opposed to
running lab experiments. With in silico screening, computer simulations are used to prioritize targets for HTS
based on predicted binding interactions. Virtual screens can be one of two types: (i) structure-based and (ii)
ligand-based. The SMSF team currently uses a structure-based virtual screening process that leverages multiple
virtual docking-based algorithms (AutoDock and AutoDock Vina). Using this process, the team is able to achieve
an enrichment in the range of 5 to 10 times better than random selection. Unfortunately, these enrichment levels
are still too low to obtain several high-quality hits in a screen of 100 to 1000 small molecules. Higher enrichment
levels are required to have a significant impact on the screening workflow.

Recent work performed by researchers at Stanford and Google shows great promise in multitask, deep learning
based methods of virtual screening in “Massively Multitask Networks for Drug Discovery” (MMNT) [1]. Our
research team proposed to enhance the SMSF's virtual enrichment methods with similar multitask deep learning
methods. Our goal was to first replicate and then to extend previous work to provide a working solution for the
SMSF. The scope of this summer 2015 project is the first phase of this research and includes: data collection,
cleaning, and the replication of the machine learning models used in the MMNT experiments on our own data.

�1

This report includes general bioinformatics and machine learning to provide context, as well as our experiments,
results and conclusions. The project report is organized as follows: 1. bioinformatics, 2. machine learning, 3.
experiments and 4. conclusions. The sections on bioinformatics and machine learning provide context for the
project and outline the foundational concepts on which our experiments were built. Various historical methods in
each discipline are explored and contrasted with more recent approaches to show the motivation for our decision
to use a multitask, deep learning ensemble for drug discovery.

Bioinformatics

 As biological information continues to grow exponentially with data-driven scientific advances such as
the Human Genome Project, the necessity for computer-aided analysis has grown increasingly important.
Bioinformatics has evolved to combine several other fields including: computer science, statistics, and applied
math. One goal of bioinformatics is to store and analyze biological data for the purpose of drug discovery and
development.

Bioinformatics: History
 All living organisms depend on three primary biopolymers: proteins, Deoxyribonucleic acid (DNA), and
Ribonucleic acid (RNA). These are essential to all known forms of life since each plays an important and
interdependent role in the cell. Proteins were first discovered in the early 1800s, and nucleic acids (DNA, RNA)
were discovered in 1868. The important relationships between these macromolecules was not understood until
many years later in 1956 when Francis Crick established the central dogma of molecular biology, which states
the flow of genetic information in a biological system “DNA Makes RNA, and RNA Makes protein” [16] (Figure 1).
Amazingly, this remains one of the central keystones of biology over half a century later. The steps in this
process are now better understood as transcription, translation, replication and splicing. Years later in 1970 the
field of bioinformatics was created to model and analyze life science data which was quickly growing too vast for
human comprehension alone. A brief history of micro biology and bioinformatics follows.

In the early 1800s proteins were discovered as a distinct class of biological molecules by Antoine Fourcroy [6].
Later, in 1838 the Swedish scientist Jöns Jacob Berzelius named this type of molecule “protein” based on the
greek work “proteios” which means “primary”. In 1926 James B. Sumner demonstrated that the crystalline
enzyme urease is also a protein [7], which was the turning point where the regulatory role of protein was first
understood.

In 1868 Friedrich Miescher discovered nucleic acids, but the role of DNA and RNA in protein synthesis was not
discovered until much later. In 1928, Frederick Griffith performed experiments where the traits of heated and

�2

The central dogma of molecular biology demonstrates the relationships
between DNA, RNA and protein [61].

Figure 1

killed type III-S smooth, lethal Pneumococcus bacteria could be transferred to a type II-R rough (non-lethal)
strain, which resulted in killing the host [8]. This lead to a later discovery in 1943 where DNA (which was not
destroyed by the heat) was discovered as to be the mechanism for transforming the previously non-lethal
bacteria. In 1953 Francis Crick and James Watson presented the modern double-helix model of DNA in the
Journal of Nature. Crick outlined the relationship between DNA, RNA and Protein and this became the basis of
molecular biology in 1956.

In 1970 Paulien Hogeweg and Ben Hesper created the term “bioinformatics” to refer to the study of information
in biotic systems. The modern meaning of the term is slightly different, and bioinformatics now combines various
disciplines including computer science, engineering, statistics, and applied math to discover and process life
science data. In bioinformatics, image and signal processing techniques are applied to biological data to
simulate, model, and analyze Deoxyribonucleic acid (DNA), Ribonucleic acid (RNA), protein structures, and
associated molecular interactions.

Bioinformatics: Practical Applications
 One goal of bioinformatics is to understand the ways in which various macromolecules of life interact,
including protein, RNA and DNA. Within a eukaryotic cell there is a nucleus which contains chromosomes. These
chromosomes contain most of the DNA within a living organism [5]. The DNA molecules consist of repeating
patterns of cytosine (C), guanine (G), adenine (A), or thymine (T). Together, C, G, A, T encode the various
instructions required to create and regulate life (Figure 2). A gene is a section of DNA which confers various traits
of a species from parents to offspring. For example, the human genome contains 3.1 billion base pairs where
about 2.9% encode genes and the other 97.1% (originally considered useless) contains instructions for when,
where, and what volume of proteins to generate.

A protein is a large biomolecule which consists of long chains of amino acid sequences with a three-dimensional
structure which is a result of the protein folds. The protein folds and resulting structure are determined by gene
sequences, and thus, the genetic sequence determines both the form and function of proteins which are
generated. Large proteins form important building blocks of life including muscle, cartilage, skin and hair. Smaller
proteins such as hemoglobin, hormones, antibodies, antigens, and enzymes also play a critical role in regulating
life.

As biological data continues to grow at an exponential rate, computers are becoming increasingly invaluable
tools for analyzing various aspects of molecular biology, including genome sequences and macromolecular

�3

The double-helix structure of DNA [15].

Figure 2

structures. Bioinformatics is a broad field; however, the focus of this project is on predicting protein-compound
interactions. For example, by designing a specific ligand which binds with a protein target, this can lead to the
discovery of a new drug that changes the behavior of that protein and potentially cures a disease. There are a
number of popular approaches for discovering protein-compound compatibility for drug discovery. The most
common approaches include high-throughput screening (HTS) and virtual screening. Virtual screening includes
docking methods, as well as machine learning based approaches.

Bioinformatics: Experimental Approaches
High Throughput Screening (HTS)
 By automating the process of running experiments with software, robotics, sensors, and liquid handling
mechanisms, millions of chemical, genetic and pharmacological experiments can be performed quickly and
accurately (Figure 3 illustrates an uHTS facility). Generally a clear plastic microtiter plate with 384, 1536 or 3456
wells is used. Each well is 9mm deep and contains the experimental matter, such as a chemical compound,
protein, or cells (typically between 5 and 200 L per well). After sufficient incubation time has passed for the
reaction to complete, measurements are taken from each well either manually or with a microplate reader. A
microplate reader can use various detection modes to measure reactions, such as absorbance, luminescence,
or fluorescence intensity [3]. An experimental compound with the desired reaction is considered a hit.

Artificial Enrichment: Docking

 Brute force HTS is not financially viable for many institutions, and in the last decade an increasing
number of researchers have turned towards computer-based enrichment methods to narrow down the number of
compounds before running experiments. If a researcher can obtain the crystal structure of the target (e.g. protein
fold structure), programs such as Autodock Vina can generate a three-dimensional model of the target and
compare it the structures of various natural and designer compounds to determine whether physical docking is
possible (Figure 4 illustrates the docking process). A computer simulation checks a series of docking poses to
determine whether a given compound is structurally compatible with the target [4].

Typical docking software is unable to account for water displacement and various atomic level bonds which the
three-dimensional structure simulation does not account for. In other words, although a compound might seem to
be compatible with the crystal target structure, there may be some atomic level physics that block the binding. In
practice, the UW-Madison SMSF is only able to achieve virtual enrichment in the 5 to 10 range with the docking
approach.

Artificial Enrichment: Machine Learning
 Compared to most other scientific disciplines, artificial intelligence (AI) is still in its infancy. The field of AI
did not formally exist until the mid-19th century when the first computers were created. Since that time both AI

�4

The Pivot Park ultra high throughput screening lab (uHTS) in the Netherlands [63].

Figure 3

and the sub-field of machine learning have rapidly evolved. As improvements in machine learning are discovered
these advances are applied in many other fields including bioinformatics. Over the years, many different
machine learning algorithms have been used to solve bioinformatic problems (such as artificial enrichment to
predict protein-ligand binding). Examples include: fuzzy expert systems, genetic algorithms, inductive logic
programming, logistic regression and decision trees.

Recent discoveries in deep learning show great potential for significant improvement over traditional virtual
enrichment methods. To provide historical and theoretical context, we will introduce artificial intelligence,
machine learning, as well as machine learning algorithms commonly used in bioinformatics. Next, we will lay the
groundwork for deep learning by discussing multitask learning, perceptrons, and neural networks, as well as the
key discoveries that made deep learning possible. Finally, we will discuss how multitask and deep learning
algorithms were used in our experiments.

Artificial Intelligence

 What is artificial intelligence (AI)? According to John McCarthy (Figure 5), one of the first modern AI
researchers, it is “the science and engineering of making intelligent machines, especially intelligent computer
programs” [30]. The goal of AI is to create computers and software (intelligent agents), capable of learning and
making intelligent decisions. An intelligent agent is an autonomous entity which observes its environment and
makes decisions designed to maximize the possibility of success.

Artificial Intelligence: History

 The first general purpose computer “Electronic Numerical Integrator And Computer” (ENIAC) was
created in 1941. ENIAC contained thousands of vacuum tubes, crystal diodes, relays, resistors and capacitors
and occupied 1800 ft2. It was said that when ENIAC turned on, the lights in Philadelphia dimmed [20]. When

�5

An overview of docking based virtual enrichment [13].

Figure 4

ENIAC was publicly announced in 1946, the media described the computer as a “Giant Brain” [20]. This
designation is somewhat misleading considering this machine could not pass the Turing test for AI. The Turing
test requires that both a human and an artificially intelligent machine carry on a conversation. If a human
observer cannot decipher between the machine and the human, then the machine has passed the Turing test
[21] (Figure 5).

In 1948 while working at the National Physical Laboratory in London, Alan Turing wrote a paper called “Intelligent
Machinery, a Heretical Theory” in which he outlined various machine learning models which are variations on
what are now called neural networks. The work was not published until 14 years after his death; some speculate
this was because Sir Charles Darwin (grandson of the famous naturalist) dismissed his work as a “schoolboy
essay” [23]. Alan Turing created and published his “Turing test” two years later in 1950.

In 1956 the first research in artificial intelligence began with the Dartmouth Research conference. Tens of
millions of dollars were awarded in research funding but the scientists over-promised stating an artificially
intelligent machine as smart as a human being would be created within a generation [24]. The research failed to
deliver satisfactory progress and research funding was withdrawn. In decades since then, financial sector
support for AI research has been very cyclical. The period of 1974 to 1980 is described as the first AI winter
since funding almost completely dried up, and the period of 1987 to 1993 is called the second AI winter. The
term “AI winter” was coined by researchers who survived the long periods of funding cuts [24]. The intersection
of statistics and computer science revived interest in machine learning during the 1990s, and the field shifted
towards a more data-driven approach.

Although the failure to accomplish the grand promises of AI research sullied the reputation of the field in the
past, industry and research success in more recent years has created a resurgence of interest in the field.
Moore’s law and the evolution of computer processing speeds have also played a critical role in making modern
AI a possibility. For example, in 1997 IBM’s Deep Blue computer defeated the current world chess champion
Gary Kasperov, and in 2005 a Stanford robot won the DARPA grand challenge by driving itself through 131 miles
of desert trails. In 2009 Google built a self-driving car, and in 2011 IBM’s Watson computer defeated the current
Jeopardy game show champions. In 2011 smartphone applications included: Apple’s Siri, Google Now, and
Microsoft’s Cortana, which all allow a human to interact with their smartphone device through natural language.

Since the late 1990s the rise of the internet and subsequent technology industry success with machine learning
based applications has demonstrated that AI-based companies are economically viable. The rise of multibillion
dollar web-based search companies such as Google, Yahoo, and Baidu demonstrate some significant progress
milestones in AI such as web crawlers, data mining, and natural language web searches. Machine learning has

�6

John McCarthy (1927-2011) is known as the
father of artificial intelligence [31].

Alan Turing (1912-1954) created the “Turing test”
to determine intelligence in 1950 [32].

Figure 5

now become a working practical solution and many traditional organizations in both science and industry have
started adopting machine learning approaches to solve data related problems.

As mentioned previously, many labs are experiencing cost challenges since the ratio of drugs discovered
annually per billion spent have fallen in half each decade for several decades [2]. While big pharma has
embraced brute force HTS solutions, smaller research labs have been forced to turn to more creative solutions.
Recent advances in data-driven machine learning has the potential to help solve this problem by allowing these
organizations to predict protein-ligand binding potential with computer simulations, narrowing down the pool of
candidate choices for HTS resulting in a better cost-per-hit ratio. We will now take a brief diversion into the
history of machine learning before discussing some of the machine learning methods commonly used in
bioinformatics.

Machine Learning: Introduction

 Knowledge acquisition was identified as an artificial intelligence bottleneck early on in AI research;
addressing this issue is the focus of machine learning. The bottleneck was caused by an exponential growth in
data which resulted in similar growth in the need for expert systems. Machine learning originally evolved from
statistical pattern recognition whereby a machine could use algorithms to recognize patterns in data. Machine
learning extends the idea of pattern recognition to ‘learn’ from the past and predict future patterns.

The goal of machine learning (ML) is for machines to learn from experience and act on that learning without
being explicitly programmed for that. In other words, the goal is to create machines that learn implicitly from
algorithms with little or no human supervision. This is in contrast to expert systems which must be hand-crafted
based on the knowledge of experts (Figure 6 shows heuristics for choosing the right ML algoritm).

In more formal terms, machine learning is the study of algorithms that improve their performance P at some task

�7

This map, provided by Sci-kit learn, one of the most popular machine learning frameworks, helps a practitioner
determine which machine learning algorithm is most suitable given a problem domain [37].

Figure 6

T with experience E. A well defined machine learning problem clearly specifies <P, T, E>. For example, the task
might be predicting how much a consumer might enjoy reading a book (T), given a user-history of past book
ratings (E), and the difference between the predicted and actual rating is performance (P). There are many
different kinds of machine learning algorithms and some are more effective in some contexts than others. Some
examples of common machine learning algorithms are: inductive logic programming, logistic regression, decision
trees, random forests and multitask learning.

There are two primary types of machine learning — supervised and unsupervised. In supervised learning, Y is
predicted given a feature vector X. For example, given the features of a molecular compound such as atomic
structure and chirality, one could try and predict if the compound will bind (active = 1) or not bind (inactive = 0)
with a target protein Y; this is a binary classification task {0, 1}. One could then use feature vectors from many
known compounds that were already tested in a lab (and determined as active or inactive) to train a machine
learning model. When Y is already known for a particular dataset, it is referred to as “labeled” data. After the
model was trained with the labeled data one could then input a new untested molecule into the model and
predict whether or not the compound will be active or inactive (will it bind with the protein target). If the machine
learning model tends to make accurate predictions about binding potential (active / inactive), then the model
generalizes well.

In contrast, with unsupervised learning, the data has no labels. In other words, with the compound-protein
binding example, the algorithm would only be given the molecule vectors X without any classification preference
Y for the protein. A machine learning algorithm such as k-means clustering could then be applied to find
interesting patterns or groupings within the unlabeled data. Unsupervised learning has many bioinformatics
applications, especially for experiments with vast amounts of unlabeled data. For example, recent work by
Michael Newton et al. demonstrated that unsupervised compound clustering can be used to improve docking
score enrichment [64].

Aside from supervised and unsupervised learning, there are also semi-supervised hybrid machine learning
algorithms that use a small amount of labeled data and a large amount of unlabeled data. Since this project uses
a supervised machine learning approach (vast quantities of labeled data are available), we now shift our focus to
a number of common supervised machine learning approaches used in bioinformatics.

Artificial Enrichment: Machine Learning

 As mentioned above, artificial enrichment in silico methods can predict potential protein-compound
binding in a computer simulation. Aside from HTS and docking approaches, machine learning is another
common virtual enrichment approach. Examples of machine learning algorithms used in bioinformatics include
fuzzy expert systems, genetic algorithms, inductive logic programming, multitask learning, random forests,
logistic regression, and artificial neural networks (ANNs).

Fuzzy Expert Systems

 In 1965 Lotfi A. Zadeh, a University of California at Berkeley professor, proposed fuzzy sets as an
extension to classical set theory in mathematics [10]. A fuzzy set contains entities with a continuum in grades of
membership as opposed to traditional boolean thinking where something is either a member of a set or it is not.
Zadeh designates traditional sets with absolute membership in binary {0, 1} terms as “crisp sets”. Concepts such
as union, intersection, convexity and relations were extended to fuzzy sets and the term “fuzzy logic” was
introduced [10]. This forms the basis for fuzzy expert systems which can deal with “fuzzy” (i.e. partially true)
concepts. Expert systems use explicit knowledge as opposed to most other algorithms which tend to use implicit
knowledge (Figure 7 illustrates a fuzzy expert system).

One advantage of fuzzy systems is that decisions with degrees of uncertainty can be implemented in ways
humans can understand, which allows the experience of human experts to be incorporated into these systems.
Fuzzy systems can also deal with noisy data and uncertainty when dealing with a variety of biological patterns.

�8

One example application was a fuzzy expert system built in 2000 by Woolf, Peter J., and Yixin Wang. The
authors used a fuzzy logic approach to analyze yeast gene expression data, which could sometimes predict the
functions of unknown genes [11]. Fuzzy logic has also been used to enhance docking scores for virtual
enrichment. For example, In 2009 a study by David Hecht et al. contrasted fuzzy logic, artificial neural networks
and evolutionary computation for calculating improved docking scores [65].

Genetic Algorithms

 Genetic algorithms are heuristic methods that simulate natural selection within a reproducing population.
This is done by generating a population of individuals encoded as strings with various possible biological traits. A
fitness function determines how likely these individuals are to reproduce and provides a measure of goodness
which represents a global optimum to work towards. The least fit individual drops out of the population and is no
longer able to reproduce. The remaining individuals go through a crossover state where individuals reproduce
and mix their genetic traits which are inherited by their offspring. A mutation phase follows where with a very
small probability that some traits may change. If any individuals have achieved the predetermined optimal level
of fitness (e.g. some set of “good” traits), then the algorithm stops. Otherwise, the algorithm keeps running
through additional generations and keeps reproducing offspring and dropping unfit individuals until an optimally
fit individual is produced.

Genetic algorithms are used in bioinformatics for multiple sequence alignment (MSA), gene prediction, and

�9

The block structure of a fuzzy logic system [12].

Figure 7

The standard genetic algorithm in the context of Darwinian selection applied to robots [19].

Figure 8

population genetics modeling. By using MSA, shared evolutionary origins can be inferred from DNA, RNA, and
protein sequences. The goal of gene prediction is to discover what regions of genomic DNA encode genes.
Population genetics modeling is a highly mathematical discipline where allele frequencies in a population are
studied. Through reproduction each parent contributes one allele to an offspring and the net effect of allow
reproduction in a population directly impacts the allele distribution within a population. Genetics modeling also
studies the various factors that affect allele frequency such as natural selection, sexual selection, mutation,
genetic drift and gene flow.

In 2010 two Swiss researchers applied a genetic algorithm to a population of robots with various traits including
navigation, homing, predation, brain and body morphology. They found that after a few hundred generations, the
robots were able to adapt strategies for hunting and evasion, and were able to navigate a maze without bumping
into any walls. The bots even manifested traits such as cooperation and altruism. The graphic (Figure 8) from the
study provides a good visualization of how genetic algorithms work, although their specific application is unusual
(robot evolution).

Genetic algorithms are also commonly used in docking approaches (virtual enrichment) to predict protein-ligand
binding. For example, a 1998 study by Morris et al. compared Monte Carlo simulated annealing, traditional
genetic algorithms and Lamarckian genetic algorithms to predict the “bound conformations of flexible ligands to
macromolecular targets” [66].

Inductive Logic Programming

 In 1991 Stephen Muggleton coined the term inductive logic programming (ILP), defined as the
intersection between logic programming and machine learning [34]. Inductive logic programming has proven
effective for many bioinformatics and natural language processing tasks. ILP works by providing many positive
and negative examples to an inductive learner which builds logical rules that fit the data. In other words: positive
examples + negative examples + background predicates => hypothesis. Variations of inductive logic
programming include: inverse resolution, GOLEM, FOIL, CHAM and CHILLIN.

Inverse resolution and GOLEM are considered bottom-up ILP systems because they start from the most specific
clauses that correctly identify positive training examples and generalize until any additional generalization would
result in misclassification of negative examples. FOIL and CHAM are examples of top-down ILP systems. In a
top-down ILP system “a specialization operator S produces a set of clauses C which are allowable by the
language bias from a clause c” [36]. CHILLIN implements a hybrid learning model with combined aspects of both
top-down and bottom up ILP logic [35].

The First Order Inductive Learner (FOIL) is one of the most popular types of ILP and works by using both
positive and negative training examples for a target concept, as well as background knowledge predicates to
learn clauses that only identify positive tuples. FOIL is known as a “function free” ILP method because it cannot
use any constants or function symbols [35] . Foil applies a separate-and-conquer strategy (as opposed to the
more typical divide and conquer) since each iteration of the algorithm adds one rule at a time until there are no
positive examples (or few) left.

In 2010 David Page et al. created an ILP-based model of hexose-binding sites and compared the results to
several baseline “black box” machine learning methods [67]. The ILP-based method performance was similar to
the baselines, but ultimately the ILP-based results were more useful since it gave insight into the way the model
was making decisions. Although ILP is an effective algorithm for solving bioinformatics problems it is not a
common method. Thus, ILP was not chosen as one of our baseline methods.

Logistic Regression

 The name logistic regression is a misnomer because it is used for classification (not regression). Logistic

�10

regression is for datasets with 1 or more independent variables (the feature vector X) and a binary dependent
variable Y with two mutually exclusive outcomes; for example: true or false, active or inactive. Binary logistic
regression is analogous to linear regression except that the dependent variable Y is a measurement (instead of
a nominal 0 or 1). Logistic regression uses the logistic function since all numbers using this function up to infinity
map between 0 and 1 respectively, based on a smooth s-curve. This is ideal for keeping all resulting values
within probabilistic bounds.

The logistic regression function f(x) calculation is shown in Figure 9 on the left-side. The right-side of figure 9 is a
visualization of the input feature vector X1…Xn and the logistic function which is applied to the input vector and
corresponding weights to produce an output between 0 and 1 resulting with a Y classification based on the
threshold function (e.g. 0.5). The bias unit W0 is used to shift the entire curve left or right, and the remaining
weights Wi then help determine how probable the target Y is based on the features X.

Logistic regression is relatively easy to implement (compared to other machine learning algorithms) and can
usually generate reasonably accurate classification results for many different types of bioinformatics problems.
These were some of the reasons for our decision to include logistic regression as one of our baseline methods
for this project.

Decision Trees

 The goal of decision trees is to apply a divide-and-conquer approach and make the tree as small as
possible, while still correctly classifying the training set; unfortunately this is an NP-hard problem. ID3, C4.5 and
CART are three of the most common decision tree types. Instead, ID3 decision trees use a heuristic: greedily
choose splits that maximize information gain. Information gain is maximized by reducing the entropy
(uncertainty) of random variables in the dataset.

In information theory, each possible variation of a feature is encoded with a sequence of {0, 1} bits. Instead of
giving all features an equal number of bits, the least bits are given to the most common features and
progressively more bits to those features that are the least common.

Entropy can be measured as the expected number of bits to encode the variable. Conditional entropy can be
determined if the additional step of conditioning on some other variable is added. Choosing the splits that reduce
conditional entropy the most is known as mutual information gain [41] (Figure 10), and this is how splits are
chosen in ID3 decision trees. In other words, at every step the loop considers each possible split and chooses
the split that maximizes information gain.
The weakness of information gain is that some features are unique for every instance; gain ratio is used to

�11

Left: the sigmoid logistic function. Right: feature vectors from X are multiplied with the respective weight vectors Wi before
being passed to the logistic activation function. Then a threshold is applied to determine the class.

Figure 9

Above: the entropy and conditional entropy equations used to calculate mutual information for decision tree splits.

Figure 10

overcome this limitation. Finally, the algorithm stops splitting when all the remaining examples only fit one class.

The example decision tree below determines whether a business might qualify for a $15,000 loan based on
credit score and monthly sales. The training set D contains 3 positive and 12 negative examples. Notice how the
credit score feature filters a larger number of applicants than monthly sales; hence, the tree splits on this
property first to maximize information gain. Although there might be many more features, there is no need to split
beyond monthly sales since all examples are now correctly classified.

One of the greatest strengths of decision trees is that the algorithm makes decisions that are inherently easy for
humans to understand (see Figure 11). Also, decision trees are often a good choice when data is sparse, but as
the size of the training set increases, decision trees tend to overfit data. Decision trees greedily attempt to
maximize information gain and this creates an inherent inductive bias in the way decisions are made. This
means the types of hypotheses a decision tree favors will tend to overfit training examples as the size of the
dataset increases.

Random Forests

 Decision trees (especially deep ones) tend to have low bias and high variance; random forests are an
ensemble method that overcomes these limitations. This reduces the variance in the overall model at the cost of
slightly increased bias and somewhat less comprehensible decisions (since many decision trees are involved in
the final prediction). There are two typical ways random forests randomize the results: bootstrap aggregation and
random feature selection.

Bootstrap aggregating (or bagging) builds decision trees on subsets of the data which results in many different

�12

Above: an example of a decision tree to determine if a borrower is qualified to obtain a $15,000 loan.

Figure 11

Above: random forest visualization where many decision trees are built from the training data vectors X and result in a
majority vote prediction for target K [39].

Figure 12

random decision trees which helps mitigate bias (Figure 12 illustrates a random forest). With bagging a random
sample is drawn from the training data, with replacement, to train a number of different decision trees (typically
10, 20, 50 or 100). In addition to bagging, random forests also select features from a random subset of features
to help get more variation in the kinds of decisions that are made. Sometimes this process is referred to as
feature bagging because this is just like training set bagging, except it is applied to features. Predictions can
then be made with the combined results of all the decision trees with the mean, or a majority vote. Other
common methods of randomizing forests include random split selection and random training weights [40].

Random forests do not produce stellar results, but they are robust in the sense that they can be applied to
almost any problem domain and produce “pretty good” (but not great) accuracy. Generally, a domain specific
machine learning algorithm should (almost) always outperform random forests. This along with ease of
implementation are some of the reasons we choose random forests as one of the baseline methods for this
project.

Multitask Learning

 In traditional single task learning, one trains examples for a single target and a prediction is made based
on that one target. In contrast, with multitask learning, a mixture of training examples are drawn from many
related problems (that share the same set of features), and predictions are made for many different tasks at
once. Assuming the various tasks share some latent shared model, the learner can use the training examples to
improve generalization.

The multitask method of learning many similar problems at once to become more effective at solving related
problems is a type of inductive transfer. Multitask learning can be combined with any machine learning method
that can generate multiple outputs. One way to translate multiple outputs into probabilities is by using a softmax
function. A softmax generates probabilities for mutually exclusive numeric outputs by normalizing over the total
output (for each respective outcome). For example, a bioinformatics multitask learning model could predict
several mutually exclusive outcomes such as the probability a compound will bind with several respective
targets, all of which are in the same host (where the compound could only bind with one protein).

Multitask learning has been applied to many different bioinformatics related problems including genome-wide
association studies, protein structure, protein-protein interactions [68]. In 2014 Anthony Gitter et al. developed
MT-SDREM, a multitask learning model for deciphering signaling and regulatory networks. Their experiments
included the application of SDREM to decipher human auto-immune responses to three flu-stains: H1N1, H5N1
and H3N2 [68].

Several years ago there was an extreme sparsity of multitask research in bioinformatics, but this is starting to
change. For example, in 2014 Geoffrey Hinton’s group won the Merck Kaggle challenge by applying a multitask
learning strategy to deep network models [48]. The Merck Kaggle challenge involved predicting compound-target
binding for 15 different assays. Training the QSAR (Quantitative Structure-Activity/Property Relationship) model
on all 15 tasks at once regularized the model (i.e. prevented overfitting) and forced the system to generalize
more effectively and learn the latent structures in the data.

Recent research such as the Stanford-Google MMNT experiments discovered that adding large numbers of
additional tasks to similar bioinformatics problems combined with deep learning (a type of neural network
explained below) can scale extremely well. The MMNT experiments used data for 259 targets (mostly proteins)
and 1.6 million compounds to predict whether unseen compounds would likely bind with the target (active or
inactive). Each additional target dataset continued to increase accuracy measured as area under curve (AUC) as
the number of targets increased [1] (Figure 13 displays the MMNT AUC results).

AUC is an accuracy metric commonly used in binary classification problems. AUC is obtaining by taking the
integral of an ROC (the receiver operating characteristic) curve. An ROC curve plots the false positive rate (FPR,

�13

x-axis) against the true positive rate (TPR, y-axis). The ROC curve shows how a binary classifier performs as the
discrimination threshold varies. The intuition for AUC is this: given two random examples, one of which is
positive and the other is negative, what is the proportion of the time one guesses correctly?

One benefit of AUC is that it cannot be easily manipulated like raw accuracy. For example, in a scenario where
99% of all examples are positive, a classifier could always guess positive no matter what and still achieve 99%
accuracy. AUC provides a more robust measure of accuracy by preventing this kind of manipulation (in this
specific example the guess is always positive so the AUC will be 0.50).The high AUC scores achieved (as
measured verse baseline methods) by the Stanford-Google MMNT team demonstrated that multitask learning
works well when combined with deep learning.

Multitask learning is one of the algorithms used in this project due to the strong synergy that can be achieved by
learning many tasks at once, combined with a deep learning model which is uniquely capable of utilizing the data
across many tasks. Before we discuss deep learning further, we will begin with the fundamental building blocks
of neural networks (the perceptron) as well as some of the history and theory to provide context.

Neural Networks: The Perceptron

 Artificial Neural Networks (ANNs) are inspired by interconnected neurons in biological systems which
receive some number of real-valued inputs and translate that into an output. In a very generic sense, this mimics
the way neurons work in biological systems. In 1943 McCulloch and Pitts [47] created the original mathematical
model for neural networks based on binary threshold logic (as shown in Figure 14). In 1958 Frank Rosenblatt

�14

Above: multitask results from the Google-Stanford MMNT experiments. The Y-axis is AUC, and the X-axis is the number of
tasks. The AUC accuracy continues to increase as additional tasks are added and the plateau is not in sight [1].

Figure 13

Left: a visualization of perceptron math. Right: the binary threshold identity function.

Figure 14

published his work on one of the first machine learning algorithms, the perceptron [25].

Many grandiose predictions were made regarding the predictive power of perceptrons, and in 1969, Marvin
Minsky and Seymour A. Papert wrote a rebuttal which demonstrated many of the limitations of perceptrons [28].
Any concept that is not linearly separable cannot be learned by a single perceptron; the XOR example is a
common example of a non-linearly separable problem. The XOR problem is unsolvable for a single perceptron.
Minsky and Papert’s criticisms became generally accepted at the time, and perceptron-based models fell into
disrepute for years. This lead to a major decline in neural network related research for decades.

In 1986 backpropagation was discovered by Rumelhart, Hinton, and Williams, which allowed neural networks to
train hidden layers [29]. This debunked the previous limitations of perceptron-based systems as outlined by
Minsky and Papert. Figure 14 (on the left-side) shows the math in a perceptron which is somewhat similar to
logistic regression, except the activation function is a binary threshold [47]. The identity function of the binary
threshold is shown in Figure 14 (on the right-side); the result can only be {0, 1}. During training the output o is
compared to the expected target value y.

The perceptron learning update rule is as follows:
1. Randomly initialize weights.
2. Calculate the output for the given instance using the formula in Figure 14.
3. Update the weights:

Perceptrons are used as building blocks for much larger, more complicated neural networks. Many different
kinds of models can be built with perceptrons; the behavior can be modified depending on the type of activation
function used. Some common activations include: hyperbolic tangents, ramp functions, step functions, Gaussian
kernels, and rectified linear units (ReLU). A rectified linear unit (ReLU) creates a weighted sum of the linear units
and returns the total if it is greater than zero; otherwise the result is 0. Some argue that ReLU are more
biologically plausible than the more widely used sigmoid activation.

Artificial Neural Networks

 The power of neural networks lies in their ability to make multiple non-linear transformations through
many layers of neurons which can represent complex and increasingly abstract features (as more layers are
added and as layers are made wider by increasing the number of neurons). By adding many hidden layers of
varying widths to a neural network, the model can learn increasingly complex and abstract representations.
However, in order to use hidden layers one must find a way to determine how to assign error attribution and
make corrections working backwards through the neural network. This backwards propagation of errors is known
formally as “backpropagation” [29].

Although the conceptual foundation of backpropagation was discovered in 1963, it was not until 1986 that Hinton
et. al discovered a way for this algorithm to be applied to neural networks [29]. Backpropagation made it possible
to overcome the representational limitations of perceptrons by adding additional hidden input layers (Figure 15
displays a sigmoid neural network with a single hidden layer). During the process of backpropagation, gradient
descent is used to find the minimums in the error surface caused by each respective neuron when generating a
corresponding output. In order to use gradient descent and minimize errors, the activation function must be
differentiable, which is one reason why sigmoid activation functions are a common choice.

Gradient descent is an iterative process that is used to find where the error surface descends most steeply.

�15

Gradient descent then takes an iterative step in that direction by updating the weights. This is done by
progressively working backwards through the model (figures 16 and 17) through subsequent hidden layers,
moving towards the original inputs. One problem with gradient descent is that the error signals become
progressively more diffused as the signal goes back through each progressive hidden layer. This is because, as
the signal goes deeper into the model, an increasing number of neurons and weights are associated with a given
error. This makes it difficult to train more than two hidden layers efficiently. Although hidden layers three levels
and beyond can be trained, by the time a good convergence is reached in the deep layers, the layers closest to
the output are likely to be overtrained.

Deep Learning

 In the last decade deep learning has become the dominant method for speech and audio recognition. In
more recent years deep learning has also shown promise in many other disciplines. Some examples include: the
analysis of particle accelerator data, predicting the activity of potential drug molecules, reconstructing brain
circuits, and predicting user movie preferences (e.g. Netflix [69]). Deep learning is poised to leverage a
combination of multitask learning, automatic feature extraction, and progressively more abstract concepts (e.g.
feature hierarchy) which make it an ideal choice for many learning tasks beyond audio and visual recognition.

Deep learning is part of a family of machine learning algorithms that transform inputs and reconstruct them into a
distributed representation. In a distributed representation, many concepts are associated with many neurons and
many neurons are associated with many concepts. By using good random initialization, symmetry is intentionally
broken so that many different features will be learned by the neurons in the various layers of the system; this is
referred to as automatic feature detection. Each hidden layer becomes the input into the next layer of the system
and non-linear transformations can be applied which allows a system to progressively learn increasingly abstract
and deep features (which is why it is called “deep learning”) (Figure 16 illustrates how a deep neural network
learns increasingly complex and abstract features by adding additional layers).

Automatic feature detection is one of the most significant benefits of a deep learning system. A traditional
machine learning model must be carefully constructed with the right features in order to generalize well (a
process referred to as feature extraction or feature engineering). This can be extremely time consuming and
requires domain expertise, which is not practical long term as data in many fields continues to grow at an
exponential pace. For example, in 2014 Hinton’s group won the Merck Kaggle challenge without any feature
engineering (this is also mentioned in a different context in the multitask learning section above) [48].

�16

A single layer neural network using sigmoid activation functions. Input units are on the far left and sigmoid activation
functions perform non-linear transformations on the inputs [43].

Figure 15

Traditional machine learning models such as decision trees, SVMs, and k-means or k-nearest neighbor make
intuitive sense and generally create models that humans can easily understand. One problem with deep learning
is automatic feature detection can discover features that are difficult to decipher. Another issue with deep
learning is complex, deep and wide neural networks with many neurons often have extreme memory and
processing power requirements. This can potentially create scalability problems in systems where millisecond
response time is critical for a good user experience.

Some of the speed issues with deep learning can be mitigated by using CUDA capable software with high power
Nvidia graphics cards which can run millions of matrix computations in parallel with extremely high speed. Most
of the mainstream deep learning frameworks support this. Some of the leading deep learning frameworks
include: Torch (Facebook), Theano (Open Source Community), and DL4J (Skymind). Although deep learning is
just one type of machine learning, it is so completely different in its computational requirements and setup that it
requires different frameworks entirely. This may change in a few years, but as of this writing, it seems none of
the mainstream machine learning frameworks such as Weka or scikit-learn support deep learning.

Deep Learning: Optimization

 There are a number of ways to accelerate the deep learning process, reduce overfitting, and converge
on more optimal results. Unsupervised pre-training, weight decay and dropout are common regularization
methods that help prevent overfitting. During dropout a fixed proportion (e.g. 0.25) of neurons are randomly
selected to be temporarily excluded from the model. This has the effect of simulating many different (heuristically
infinite) architectures during training; this prevents co-dependency among neurons and regularizes the model
(prevents overfitting) [70]. Unsupervised pre-training (explained below) provides several benefits including: better
weight initialization, more local optima, and faster training. Nesterov’s accelerated gradient descent or other
classical momentum methods can also help gradient descent methods reach convergence in less training
epochs. Finally, annealing the learning rate through step decay or exponential decay can help the model settle

�17

An example of how a deep learning model can learn progressively deeper hierarchical features. The lowest layers learn
very simplistic features and provide inputs to the higher layers which learn more abstract features. In this image, the first
hidden layer only detects edges or other low level details. The second layer detects more abstract features such as eyes,
mouths and noses. In the final layer, abstract representations of various faces are reconstructed for facial recognition [51].

Figure 16

into a deeper, narrower part of the loss function.

Pre-training, discovered by Hinton et al. in 2006 is a fast, greedy, algorithm that uses an unsupervised layer-wise
approach to train a deep neural network one layer at a time [44]. In the case of a DBN, each layer is trained with
contrastive divergence in an unsupervised manner and each layer becomes the input for the next layer during
the process. The process for a deep autoencoder is the same except each layer is trained with with a standard
sparse autoencoder algorithm (autoencoders are discussed in the next section). After the pre-training phase is
complete, a slower fine-tuning process, such as stochastic gradient descent (SGD), is used to train the model.
With the pre-training approach, the model has already learned the features before backpropagation begins. In
this setting, backpropagation is only used on the two outer-most layers to fine-tune the parts of the model which
are relevant to the current classification task.

Although unsupervised pre-training is considered “obsolete” [71], it is still required for any deep learning
architecture that uses activation functions that suffer from gradient-based problems (such as sigmoids). For
example, the sigmoid non-linear smoothing function has an increasingly flat gradient as numbers grow towards
positive or negative infinity, and numbers towards the middle of the sigmoid (0.5) have steep gradients. During
the SGD backpropagation process, sigmoid activations are not a problem for a one or two layer model. However,
once the signal propagates through three layers or more, it tends to explode or vanish, distorting the data and
resulting in a model that fails to generalize well. Thus, with three or more layers of SGD backpropagation the
model can get caught in plateaus and local minima. Greedy unsupervised layer-wise pre-training bypasses this
problem by training each layer directly.

ReLU-based neural networks do not require pre-training since this type of activation is not subject to the
vanishing / exploding gradients problem. Typically, dropout and early stopping are enough to keep a ReLU-
based architecture regularized [71, 72]. Regardless of whether pre-training is applied, good random initialization
remains a critical step in the process because it breaks symmetry in the model increasing the odds that no two
neurons will learn the exact same thing, which is important for automatic, distributed feature-detection. If a
neural network is initialized poorly, data might not flow through the network to the final layers and the learning
model is more likely to fall into local minima and generalize poorly.

Neural Networks: Deep Belief Networks

 A Boltzmann machine is an energy-based model proposed by Hinton et al. in 1985 [53]. A Boltzmann
machine works based on the concept of thermal equilibrium; everything is defined in terms of the joint
configurations between visible and hidden units. In a Boltzmann machine, all visible units are connected to all
hidden units, but the hidden units are also connected to each other. Updates are performed through respective
positive and negative phases. The positive phase finds configurations that work well and updates their energies,
while the negative phase unlearns spurious minima. During the positive phase, a set of particles is saved for
each training case and each particle contains the current value of a hidden unit. During the negative phase, a set
of fantasy particles are stored where each has a global configuration. The simple mean field approximation is a
heuristic that allows updates with probabilities instead of binary states. The fundamental problem with Boltzmann
machines is the update algorithm is very slow, and they were rarely used in practice.

In 1998 Hinton et al. discovered the restricted Boltzmann machine (RBM) which is almost the same design as
the Boltzmann machine, except there are no connections between hidden units. The restricted Boltzmann
machine is a bipartite graph where each visible unit is connected to each hidden unit with undirected
connections. Hinton discovered that by clamping the data vector, thermal equilibrium could be reached in a
single step through a process he calls contrastive divergence. Although we cannot evaluate the energy function
directly, contrastive divergence can estimate the gradient of the energy function regardless.

The contrastive divergence shortcut has theoretical problems, and although it works like maximum likelihood
approximation in practice, it does not actually compute the log likelihood of the gradient. The key benefit of this

�18

shortcut is it allows all the updates to be performed in parallel which makes the process vastly more efficient
than the original Boltzmann machine (i.e. far less computational complexity). This was an important discovery
because it made the RBM algorithm computationally efficient enough to be used in a practical setting. In fact,
RBMs are becoming widespread in practice and in 2009 RBMs were part of the ensemble that won the 1 million
USD bounty in the Netflix Challenge.

In 2006 Hinton et al. discovered a way to stack RBMs and train deep belief networks (DBNs) [44]. A DBN is
probabilistic generative model with multiple layers of stochastic latent variables. Typically, the latent variables
have binary values and are referred to as feature detectors (or hidden units). A DBN is constructed with an input
layer followed by a number of stacked hidden layers, each of which is an RBM (displayed in Figure 17). Each
subsequent layer becomes the input for the next layer. The weights are randomly initialized to break symmetry
and help the hidden units learn many different features. Greedy layer-wise unsupervised pre-training with
contrastive divergence is used to help the DBN reconstruct the inputs for feature detection.

Figure 17 [45] illustrates the unsupervised pre-training process which begins with the input layer which has some
form of training data (e.g. pixels from an image). The weights of the first RBM (hidden layer h1) are then trained
with contrastive divergence to reach a state of energy equilibrium based on the input data. Then the hidden
activity pattern (the resulting binary states) of h1 becomes the input for the next hidden layer h2, and contrastive
divergence is applied again. This process continues until the final hidden layer is trained (which is h3 in this
example). This results in setting the weights to more suitable starting positions before the fine-tuning process
starts.

Subsequently, supervised training with fine-tuning (e.g. backpropagation) is applied to complete the training
process. Unsupervised pre-training speeds up backpropagation because it allows the process to start with
sensible feature detectors that are already tuned for the discrimination task at hand. This means
backpropagation only needs to perform a local search from a reasonably good starting point. The unsupervised
pre-training detects many features, some of which might not be useful for the discriminative task for which the
model will be used. The fine-tuning process does not discover any new features; it only modifies the features
slightly to correctly determine the classification boundaries.

Adding more RBM layers to the model enables the detection of progressively more abstract (deeper) features.
DBNs can detect very complex and deep hierarchical features and can often provide very accurate predictions at
the expense of a model that might not be conducive to human understanding. Currently, DBNs are extremely
popular since they learn much faster than traditional neural networks. For example, many recent Kaggle
competitions were won with DBNs. Also, Facebook recently launched a DBN research center and Google
recently switched to DBNs for Android speech recognition.

�19

A deep belief network (DBN) has an input vector x with RBM layers h1, h2, h3 stacked one on
top of the other. Each layer becomes the input for the next layer [45].

Figure 17

Neural Networks: Deep Autoencoders

 Sparse autoencoders are typically used to deconstruct data into a compressed, distributed
representation (dimensionality reduction) and then reconstruct the data (Figure 18 displays an autoencoder). In
terms of structure, an autoencoder is the same as a multilayer perceptron except that there are as many outputs
as there are inputs. An autoencoder (also called a denoising autoencoder) has three layers. The first hidden
layer (the encoder) transforms the data into a sparse representation by converting coordinates in the input space
to coordinates along the manifold. The second hidden layer (the decoder) inverts the mappings and reconstructs
the input vector. When the training is complete the system has learned to map the data in both directions.

An autoencoder uses backpropagation to implement principal components analysis (PCA) in a somewhat less
efficient way. The theory of PCA is that high dimensional data can often be represented in far less dimensions.
This works best when data lies near a linear manifold in high dimensional space. If the manifold can be
discovered, the points can be projected onto it, discarding information in directions orthogonal to the manifold.
As long as there are only minor variations in the data orthogonal to the manifold, very little information is lost.
Figure 19 displays an elongated Gaussian with a blue line that represents the linear manifold with the most
variation. If all the points are projected onto the blue line, the information lost will be the sum of the
unrepresented directions of the squared differences of the data-points from the mean.

In other words, the data was only lost in the orthogonal directions; the rest of the data was preserved. Standard
principal components methods allow one to efficiently take n-dimensional data and discover the orthogonal
directions that have the least variance and drop those, thus creating a more compressed version of the data.
Although doing this with a neural network is less efficient, the advantage is the method can be generalized to
deep neural networks where the code is a non-linear function of the output. The advantage of the non-linear
approach is it gives the model the capability to handle curved manifolds in the input space.

Deep autoencoders were conceptualized in the 1980s, but due to existing training methods at the time these
models could not significantly outperform PCA. In theory, encoding should be fast, but in practice it was too
difficult to optimize deep autoencoders using backpropagation.

�20

Above: a visualization of how an autoencoder transforms inputs into a compressed representation in the first hidden layer
and then reconstructs the input vector [46].

Figure 18

The first successful deep autoencoders were not created until 2006 when Hinton and Salakhutdinov discovered
the same pre-training methods developed for deep belief networks could be applied to stacked autoencoders
[54]. A deep autoencoder enables non-linear two-way mappings from the original input into a dimensionality-

reduced version and back into a reconstructed input vector.

The Hinton et al. deep autoencoder used a 784-1000-500-250-30 pattern where 784 pixels from handwritten
MNIST digits were transformed through three hidden layers (with 1000, 500, and 250 neurons respectively) into
a compressed encoding of 30 real numbers. The same pattern was used in reverse (with three hidden layers of
250-500-1000) to reconstruct the image. The reconstructed digits look like slightly blurry versions of the original
digits with some of the minor defects missing (from the original images). This was a significant discovery
because for the first time a deep autoencoder clearly outperformed PCA [54].

Experimental Evaluation

 The long term goal of this research project is to assist the University of Wisconsin-Madison Small
Molecule Screening Facility (SMSF) by improving the SMSF’s virtual enrichment process from 10 fold up to 40
fold or greater. As explained in earlier sections, deep learning is ideal for extracting deep hierarchical feature
representations and multitask learning has demonstrated evidence of massive scalability. The ensemble of these
two methods has proven effective for solving some recent bioinformatics problems. The success of various
multitask deep learning experiments such as Stanford-Google MMNT [1] and Hinton’s Merck Kaggle victory [48]
inspired us to replicate their success by creating our system based on these algorithms.

Our plan was as follows:
1. Collect a massive amount of public bioassay data.
2. Create baselines with traditional machine learning methods.
3. Build multitask deep learning models.
4. Run experiments to confirm we can achieve the relative accuracy levels of past experiments.
5. Extend and enhance the models to provide a practical solution to the SMSF.

The Datasets
 In order to replicate past experiments we required four large public cheminformatic datasets: PCBA,
Tox21, MUV, and DUD-E (Table 1). These four combined datasets contain 1.6 million compounds and 258
different targets (mostly, but not all protein). The PubChem BioAssay Database (PCBA) is the largest dataset
with 5000 protein targets and 30 gene targets [55]. The 128 protein targets were selected from PCBA due to the
high number of training samples in those respective datasets.

The Maximum Unbiased Validation (MUV) dataset is designed to help prevent common pitfalls in virtual
screening and provides the results for 17 very challenging targets [56]. The Tox21 dataset contains an analysis

�21

Above: a two dimensional elongated Gaussian with a blue line through the direction of greatest variance. The red line is
orthogonal to the linear manifold and is the direction of least variance. The distance from the green point to the orange
point represents the information lost on a single training case when dimensionality reduction is applied.

Figure 19

of chemicals screened against 12 targets through the federal toxicity testing of the 21st century [57]. DUD-E
provides useful decoys designed to gauge the accuracy of virtual docking programs [58]. All of these datasets

provide a binary result for each compound {inactive, active} or {0, 1}, where active means the compound is likely
to bind with the target and inactive means the compound is inert.

The rationale behind gathering targets from a plethora of public datasets was to amass a collection of data that
could leverage the power of both deep learning and multitask algorithms. Given a set of related tasks, a
multitask dataset has the potential for higher accuracy since the learner is forced to detect latent structures in the
data which are true across all tasks. This makes overfitting more unlikely and provides features that might not be
learnable for a single task. In order for the learner to discriminate, we converted all the chemical compounds into
extended connectivity fingerprints (ECFP4). The ECFP4 fingerprinting algorithm is designed to capture features
relevant to molecular activity which is ideal for drug discovery [59].

The ECFP4 algorithm assigns numeric identifiers to each atom, but not all numbers are reported. The process
can be viewed as a form of lossy compression since slightly different, but very similar molecules can both be
assigned the same numeric identifiers. Increasing the number of bits reported can reduce the chances of a
collision, but there are also diminishing returns in the accuracy gains obtainable with longer fingerprints (e.g.
1024 bit, 2048 bit, or larger fingerprints can be used). This and computational complexity concerns were the
pragmatic reasoning that resulted in our decision to use 1024 bit ECFP4 fingerprints.

It is possible an active molecule could map to the same ECFP4 fingerprint as an inactive compound which
creates some risk for artificial enrichment (this could negatively impact AUC). There was also significant known
overlap between the datasets as well. For example, PCBA data is the primary source of MUV data. Based on our
analysis there was a degree of overlap in the datasets where distinct molecules were mapped to the same 1024
bit ECFP4 fingerprint. The exact extent of the overlap between datasets and actives or inactives may need to be
explored further.

Our datasets distribution is heavily skewed towards inactive compounds: only 1.37% of the 37.9 million training
examples are active (about 0.5 million). In order to prevent learning problems in our models due to the biased
active-to-inactive ratio, we oversampled the active compounds and provided stratified samples to our learning
models. This helped prevent false negatives and improved the overall AUC (area under curve) scores. Although
recent research has shown that AUC might be an imperfect measure, it is still more robust than using a measure
such as accuracy percentage.

�22

The table above displays a summary of the training data used in our experiments.

DATASET TARGETS ACTIVES INACTIVES

Maximum Unbiased Validation (MUV) 17 510 255,000

PubChem BioAssay Database (PCBA) 128 472,440 35,631,830

Toxicology in the 21st Century (Tox21) 12 7,121 90,944

Database of Useful Decoys: Enhanced (DUD-E) 102 40,482 1,414,421

Totals 259 520,553 37,392,195

Table 1

For example, one could achieve 98.63% average accuracy across all models if the model was hard-coded to
always predict negative (since only 1.37% of the training examples are inactive). Using AUC as our accuracy
measure prevents this kind of manipulation and provides more statistically significant result. Furthermore, k-fold
average AUC was necessary to contrast our benchmarks with previous work [1] (Figure 20 illustrates examples
of typical AUC curves).

Training, Validation and Test Sets

 We measure the performance of each machine learning method with average AUC scores from stratified
k-fold cross validation. Two files were built for active and inactive compounds respectively for each of the 259
targets. Oversampling was done in memory after the data was read from disk to provide a more balanced ratio of
active to inactive training examples (and to prevent excessive bias for negative predictions). Each file contained
a row with the 1024 bit ECFP4 string for the target compound, a binary {0, 1} to indicate if the target was active,
and the native ID of the compound in the original dataset. Each file was divided into 5 folds, where 4 folds were
used for training and 1 fold was held out for testing.

The fold ID for each training vector was determined in advance (after shuffling the data). We did this to assure
each machine learning model was training and testing on the same folds to reduce the chances for inflated or
deflated AUC scores for any particular learning algorithm. In the case of our deep learning models, 3 folds were
used for training, and the other 2 folds were used for validation and testing respectively. The validation fold was
crucial for correctly training the deep learning models. We initially attempted to run our fine-tuning validations on
test data, but this consistently resulted in overtraining and poor AUC scores. Using held-out validation folds
obviated this issue and resulted in higher accuracy because the early stopping mechanism was able to detect a
problem and terminate training.

A separate dataset was built for training multitask learning models. Distinct multitask datasets were built for
PCBA, MUV, Tox21 and DUD-E. Multitask mini-batches were created which contained data from all tasks in each
respective dataset. For example, a DUD-E multitask dataset was generated using only data from DUD-E tasks,
drawing equal proportions of training examples from each respective task. The same approach was used for
MUV, and Tox21. In the case of PCBA, only five tasks were used (although we plan to generate a dataset for all
128 PCBA jobs in the future). In the future we will create a massively multitask dataset which includes all 259
targets.

In order to make our multitask datasets practical, we decided to include the truth set for each training example

�23

Above: an example of an ROC curve. AUC is the area under the ROC curve [60].

Figure 20

across all datasets. To do this, one hashmap was generated for each dataset respectively (PCBA, MUV, DUD-E
and Tox21) where the first column contained the 1024 bit string identifier for the compound, and subsequent
columns contained the activity level for the compound of each respective target. Column identifiers (IDs) were
predetermined based on the alphabetical ordering of each target name. Data was then inserted into each row
with the global truth labels for each training example (which was already stored in the universal hashmap for that
multitask job). The data in a given row followed this pattern where {0 , 1} indicates inactive / active for each
target:

<1024 bit string> 0 0 1 0 … 0 1 0 0

Multitask datasets were built for PCBA, MUV, Tox21, and DUD-E. The complete set of actives and inactives for
each task were sampled evenly and with replacement. For example, Tox21 has 12 tasks, so each task would
represent 1/12th of the training data. Mini-batches were generated where each mini-batch was stored in a file
containing about 10,000 training examples, where half the examples were active and inactive respectively. Each
task in the mini-batch had an equal proportion of training examples as well. We discovered that when large
batches of data were loaded into memory as a matrix, this would often cause the entire server to crash. Storing
10,000 examples per file solved the matrix memory by limiting the size of a full batch (each file was 10.5mb; the
files that caused the memory constraint problems were 300mb). Mini-batches were created by splitting files with
10,000 examples into sets of 100. Batch files of 10,000 examples each were produced drawing from all tasks
evenly with replacement.

Experiment Design

We chose logistic regression and random forests as our baseline single task machine learning models. These
were the same baselines used in the MMNT experiments (Figure 21). We used scikit-learn to implement logistic
regression, random forests and to calculate AUC. Tuning was performed on these learners to assure they
performed with reasonably high AUC. The original MMNT project experimented with 10 or 20 different types of
deep neural networks. We decided to only replicate the highest performing neural network architectures: the
pyramidal single task neural network (P-STNN) [2000, 100] and the pyramidal multitask neural network (P-
MTNN) [2000, 100]. One key difference between the MMNT experiment and our experiment is the chosen
activation functions. MMNT used ReLU activations which require no pre-training. In contrast, we chose sigmoid
activation units with pre-training, with plans to use ReLU activations instead if we encountered sub-par AUC
results.

A “pyramidal” neural network refers to a multi-layer feed-forward network which expands wider in the first layer,
eventually pushing into a very narrow final layer (i.e. roughly in the shape of a pyramid). The narrow final layer

�24

Above: results from the original Stanford-Google MMNT project [1]. This project report describes phase 1 of our project
which was to replicate these results with our own multitask deep learning system.

Figure 21

then feeds into a single threshold function for single task neural networks or a softmax layer for multitask neural
networks. In the next section we will describe our deep neural network design in more detail.

Pyramidal Deep Belief Networks: Multi and Single Task

 The Stanford-Google MMNT experiment was not clear on which deep learning algorithm MMNT used.
Both deep autoencoders and deep belief networks (DBNs) are viable candidates and both have similar
architecture (as explained above in earlier sections of this report). We chose to implement Deep Belief Networks
with plans to possibly explore deep autoencoders after the summer-term project (which is beyond the scope of
this report). Since our plan was to deliver a practical solution with extremely high AUC, we decided we should
use an existing library to implement our DBN-based P-STNNs and P-MTNNs.

Building high performance, computationally efficient deep learning systems is a non-trivial task. Hence, deep
learning is completely different from traditional machine learning algorithms in both computational complexity
and system architecture. At the time of this writing deep learning is not available in standard libraries such as
Weka, scikit-learn, and Orange. However, there are a large number of specialized deep learning libraries, three
of which were potentially compatible with our need to massively scale: Torch (Facebook), Theano (community),
and DL4J (Skymind). Daily commits and bug-fixes from many contributors and other indicators suggest Theano
has a strong vibrant community, actively extending and improving the codebase. After careful deliberation
Theano was chosen due to the combination of excellent documentation, high performance (Nvidia CUDA
compatibility for massive parallel GPU-based computations), community support, and high activity on Github.

Theano has a difficult learning curve and generating our own custom models based on this library was a non-
trivial task. We designed our DBN pyramidal single task deep belief networks (P-STNN) using Theano with the
following layer pattern: 1024-2000-100. The input layer feeds into a hidden layer (h1) with 2000 sigmoid neurons
and then the next hidden layer (h2) compressed the output into 100 neurons. One key difference with our
experiments is we used Sigmoid activations (instead of ReLU). After initializing random weights, greedy, layer-
wise unsupervised pre-training with contrastive divergence was applied to bring the neural network to an energy
equilibrium (sigmoid-based architectures require pre-training). Backpropagation with stochastic gradient descent
(SGD) was then used to fine-tune the output to make classifications based on the discovered features that were
most significant for our task. As with the baselines, scikit-learn utilities were used to calculate the AUC results.

Experiment Results
 The pyramidal multitask neural network [2000, 100] (P-MTNN) part of our project is still in progress and
completion is not expected until later in August 2015. Computational resources have continuously been a major
bottleneck in our experiment since our dataset is truly “massive” (40GB) and deep learning has substantial
computational requirements. Iterating through experiments, and determining the right settings has been a
monumental ask at times and we could not have produced results without the generous assistance of the
Simulation Based Engineering Laboratory (SBEL) and HTCondor. To an extent, the benefit of automatic feature

�25

PCBA MUV Tox21 Overall

Logistic Regression (LR) 0.81 0.77 0.80 0.79

Random Forests (RF) 0.78 0.68 0.85 0.73

P-STNN [2000, 100] 0.84 0.80 0.82 0.82

LR, RF, and P-STNN AUC results were very similar to those of the MTNN experiments, except for P-STNN PCBA.
Notably, our 1 k-fold of P-STNN outperformed the MTNN experiments.

Table 2

detection is offset by the difficulty in finding the right training settings.

Aside from P-MTNN, the rest of our experiments are complete with one exception. Our 259 single task P-STNNs
only ran on a single fold configuration due to time and computational complexity limitations. Our final 5-fold P-
STNN results may vary slightly from these initial results. Based on experience and the large number of tasks
(259), it is unlikely the results will vary significantly from our present findings.

Although our random forests had spotty performance, our logistic regression and P-STNN results substantially
outperformed the Stanford-Google MMNT results (compare Figure 21 to Table 2). We also matched the MMNT
results with DUD-E since all our baselines and P-STNNs achieved 0.99 AUC with that dataset. Since DUD-E
provides no point of differentiation between our machine learning methods, or between our project and the
MMNT experiment, it is not reported in the table. Logistic regression was not a focal point for us, and we do not
know why this baseline outperformed MMNT by such a large margin. Further investigation is required to
ascertain the reasons for this.

The P-STNNs from the MMNT experiment performed roughly the same as the logistic regression (LR) and
random forest (RF) baselines. In fact, only the final multitask neural network results (P-MTNNs) outperformed
the best baselines. We were pleasantly surprised that our DBN-based P-STNNs outperformed all the other
baselines achieving 0.82 AUC overall compared to RF at 0.73 and LR at 0.79. Random forests slightly
outperformed our P-STNNs on the smallest dataset Tox21 with 0.82 AUC which is 0.03 higher than P-STNNs.

Why did our single pyramidal deep belief networks outperform the MMNT single task deep networks? One
possible reason is the MMNT experiments omitted pre-training. As explained above, our experiment used pre-
training, a powerful regularizer that helps avoid local minima and prevents over-training. In contrast, the only
regularizer used in the MMNT experiments was 0.25 dropout in both the P-STNNs and P-MTNNs (most likely
early stopping was used as well, although this is not mentioned in the MMNT paper). While pre-training is not
‘necessary’ in training ReLU-based architectures [71, 72], this does beg the question. It is also possible that
sigmoid activations are more conducive to this problem. However, many claim ReLU units are more realistic for
biological systems.

There is another possible reason for the performance discrepancy: the ultimate focus of MMNT was not P-
STNNs; instead, the focus was on proving multitask learning can scale in a drug discovery context. In contrast,
our focus is to leverage both the power of deep learning and multitask algorithms to maximize the potential for
improved enrichment. More investigation is required for us to understand the performance differences, although
perhaps it is too early for a final conclusion (it is possible that our performance discrepancies will disappear once
we run the remaining folds).

Achieving Higher Performance With DBNs
While training our deep belief networks, we frequently experienced problems where too many neurons were set
to “off” positions (zeroed out) and the network could only predict negative results (resulting in 0.50 AUC). This
often occured when the pre-training learning rate was set too high. Inherently, the “greedy” part of unsupervised
pre-training is an indicator that a powerful learning method is being used. Greedily applying layer-wise
contrastive divergence to bring each of the respective layers to an equilibrium is vastly more aggressive than the
fine-tuning process of SGD. This is somewhat common knowledge to an extent. As evidence, the Theano default
settings use a pre-training learning rate of 0.01 and a fine-tuning learning rate of 0.1 (the pre-training rate is
1/10th the fine-tuning rate). The default pre-training learning rate was completely wrong for our experiments, and
a number of iterations were required to discover more ideal settings.

When predicting protein-ligand binding in the context of PCBA, MUV especially, a gentle pre-training rate must
be used to avoid breaking the model. We found that just 10 epochs at the absurdly low pre-training learning rate
of 0.0000003 was gentle enough to never break our P-STNN DBNs. This might not be the ideal number of pre-

�26

training epochs but 10 epochs at the low learning rate worked well enough. These settings were the parameters
in our best P-STNN performance.

In future experiments it would be interesting to see how the same learning rate would perform with 100 or 1,000
epochs of pre-training on the various datasets. Also, at least with our experiments, pre-training was a necessity;
when we attempted to bypass this step, our DBNs generalized poorly. In contrast to pre-training, the fine-tune
learning rate for SGD was not nearly as sensitive. The rate of 0.05 worked pretty well, and is not so distant from
the default Theano setting of 0.1. In future experiments, we may try more optimizations such as weight decay,
dropout and Nesterov momentum.

Conclusions

 Our goal was to explore the power of multitask learning combined with deep neural networks. Our single
task baselines and DBNs (P-STNN [2000, 100]) performed well. However, we still need to obtain multitask DBN
(P-MTNN [2000, 100]) results; this is critical in order for us to validate our hypothesis. Substantial progress was
made on the project. The bulk of the work is now complete including data collection, cleaning and preparation for
multitask and single task models, as well as creating and testing the various machine learning algorithms
required to complete our experiments. We have also achieved strong performance results with our single task
deep belief networks, which marks an important progress milestone.

In terms of system architecture, the P-MTNN is very close to the P-STNN design. The key difference is the P-
MTNN must learn more slowly since it must absorb an order of magnitude more training examples from diverse
training sets. We have built a strong foundation for this experiment by creating accurate P-STNN learners and
accurate baselines. We have also improved our depth of knowledge and experience with deep learning. Notably,
we made a few interesting discoveries regarding ideal learning rates for pre-training the public datasets PCBA,
DUD-E, Tox21 and MUV (something not discussed by the MTNN project since they did not need pre-training).

Many aspects of the deep learning experiments were non-trivial to set up since little is published on the practical
details that are often required with bleeding edge technology. Once we obtain our final P-MTNN results we can
begin the search for ways to apply our findings towards improving the SMSF’s enrichment process. These
improvements may include ensemble methods that combine existing enrichment approaches such as AutoDock
Vina with deep learning, or we could add more training data to our system from public sources like ChEMBL to
see if we can determine the point where multitask benefits reach a plateau.

Michael Newton and his UW Madison research team are also working concurrently on ways of clustering
compounds and proteins to discover shared latent properties. Cluster-based multitask job amalgamations could
could potentially result in better predictions for protein-ligand binding activity. We could also extend this project to
combine fingerprints and bioactivity features in ways that would allow us to extend the multitask deep belief
network to make predictions on new unknown targets which are not in the existing datasets.

�27

References 
[1] Ramsundar, Bharath, et al. "Massively Multitask
Networks for Drug Discovery." arXiv preprint arXiv:
1502.02072 (2015).

[2] Scannell, Jack W., et al. "Diagnosing the decline in
pharmaceutical R&D efficiency." Nature reviews Drug
discovery 11.3 (2012): 191-200.

[3] "Plate Reader." Wikipedia: The Free Encyclopedia.
Wikimedia Foundation, Inc. 22 July 2015. Web. 22 Jul.
2015. <https://en.wikipedia.org/wiki/Plate_reader>

[4] Storrs, Carina. "Screening Goes In Silico.
Computational Tools Take Some of the Cost and
Guesswork out of Drug Discovery." The-scientist.com. 1
Feb. 2015. Web. 23 July 2015. <http://www.the-
scientist.com/?articles.view/articleNo/41979/title/Screening-
Goes-In-Silico/>

[5] Wikipedia, the free encyclopedia. Chromosome.
Available at: https://en.wikipedia.org/wiki/Chromosome.
Accessed July 31, 2015].

[6] Wikipedia, the free encyclopedia. Protein. Available at:
https://en.wikipedia.org/wiki/Protein. Accessed July 31,
2015].

[7] Simoni, Robert D., Robert L. Hill, and Martha Vaughan.
"Urease, the first crystalline enzyme and the proof that
enzymes are proteins: the work of James B. Sumner."
Journal of Biological Chemistry 277.35 (2002): e23-e23.

[8] Griffith, Fred. "The significance of pneumococcal types."
Journal of Hygiene 27.02 (1928): 113-159.

[9] Watson, James D., and F. H. Crick. "Molecular structure
of nucleic acids: a structure for deoxyribose nucleic acid.
JD Watson and FHC Crick. Published in Nature, number
4356 April 25, 1953." Nature 248.5451 (1974): 765.

[10] Zadeh, Lotfi A. "Fuzzy sets." Information and control
8.3 (1965): 338-353. <http://www.cs.berkeley.edu/~zadeh/
papers/Fuzzy%20Sets-Information%20and
%20Control-1965.pdf>

[11] Woolf, Peter J., and Yixin Wang. "A fuzzy logic
approach to analyzing gene expression data."
Physiological Genomics 3.1 (2000): 9-15.

[12] Karabegovic, Almir, Zikrija Avdagic, and Mirza
Ponjavic. Applications of Fuzzy Logic in Geographic
Information Systems for Multiple Criteria Decision Making.
na, 2006.

[13] “Molecular Therapeutics Initiative”, 22 July 2015. Web.
22 Jul. 2015. <http://www.its.utmb.edu/
molecular_therapeutics_initiative/virtual_screening.html>

[14] “DNA-based methods for Bioaerosol Analysis” 24
March 2014. Web. 22 Jul. 2015. <http://microbe.net/
2014/03/24/dna-based-methods-for-bioaerosol-analysis-
great-resource/>

[15] Miller, Kenneth R., and Joseph S. Levine. Prentice Hall
biology. Upper Saddle River, N.J: Pearson/Prentice Hall,
2008. Print.

[16] Thieffry, Denis, and Sahotra Sarkar. "Forty years under
the central dogma." Trends in biochemical sciences 23.8
(1998): 312-316.

[17] Unterthiner, Thomas, et al. "Deep learning as an
opportunity in virtual screening." Deep Learning and
Representation Learning Workshop, NIPS. 2014.

[18] “Merck Molecular Activity Challenge”. 16 October
2012. Web. 22 Jul. 2015. <https://www.kaggle.com/c/
MerckActivity>

[19] Floreano, Dario, and Laurent Keller. "Evolution of
adaptive behaviour in robots by means of Darwinian
selection." PLoS Biol 8.1 (2010): e1000292. <http://
journals.plos.org/plosbiology/article?id=10.1371/
journal.pbio.1000292>
[20] McCartney, Scott. ENIAC: The triumphs and tragedies
of the world's first computer. Walker & Company, 1999.

[21] Castelfranchi, Cristiano. "Alan Turing’s “Computing
Machinery and Intelligence”." Topoi 32.2 (2013): 293-299.

[22] Turing, Alan M. "Intelligent Machinery, A Heretical
Theory." The Turing Test: Verbal Behavior as the Hallmark
of Intelligence (1948): 105.

[23] Teuscher, Christof. Turing’s connectionism: an
investigation of neural network architectures. Springer
Science & Business Media, 2012.

[24] Wikipedia, the free encyclopedia. History of artificial
intelligence. Available at: https://en.wikipedia.org/wiki/
History_of_artificial_intelligence. Accessed July 31, 2015].

[25] Rosenblatt, Frank. "The perceptron: a probabilistic
model for information storage and organization in the
brain." Psychological review 65.6 (1958): 386.

[26] Wikipedia, the free encyclopedia. Timeline of artificial
intelligence. Available at: https://en.wikipedia.org/wiki/
Timeline_of_artificial_intelligence. Accessed July 31, 2015].

[27] Warwick, Kevin, and Hemal Shah. "Good machine
performance in Turing's imitation game." Computational
Intelligence and AI in Games, IEEE Transactions on 6.3
(2014): 289-299.

[28] Minsky, M. "Paper, S.: Perceptrons: An introduction to
Computational Geometry." (1969).

[29] Rumelhart, D. E. "David E. Rumelhart, Geoffrey E.
Hinton, and Ronald J. Williams." Nature 323 (1986):
533-536.

[30] McCarthy, John. "What is artificial intelligence." URL:
http://www-formal.stanford.edu/jmc/whatisai/ (2007): 38.

[31] John Mcarthy. Available at: http://
www.independent.co.uk/news/obituaries/john-mccarthy-
computer-scientist-known-as-the-father-of-ai-6255307.html.
Accessed July 31, 2015.

[32] Alan Turing. Available at: http://
www.independent.co.uk/news/people/news/alan-turing-
gets-royal-pardon-for-gross-indecency--61-years-after-he-

�28

https://en.wikipedia.org/wiki/Plate_reader
http://www.the-scientist.com/?articles.view/articleNo/41979/title/Screening-Goes-In-Silico/
http://www.cs.berkeley.edu/~zadeh/papers/Fuzzy%20Sets-Information%20and%20Control-1965.pdf
http://www.its.utmb.edu/molecular_therapeutics_initiative/virtual_screening.html
http://microbe.net/2014/03/24/dna-based-methods-for-bioaerosol-analysis-great-resource/
https://www.kaggle.com/c/MerckActivity
http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1000292

poisoned-himself-9023116.html. Accessed July 31, 2015.

[33] Winston, Patrick H. Artificial intelligence. Reading,
Mass: Addison-Wesley Pub. Co, 1977. Print.

[34] Muggleton, Stephen. "Inductive logic programming."
New generation computing 8.4 (1991): 295-318.

[35] Zelle, John M., Raymond J. Mooney, and Joshua B.
Konvisser. "Combining top-down and bottom-up techniques
in inductive logic programming." Proceedings of the
Eleventh International Conference on Machine Learning.
1994.

[36] Wong, Man Leung, and Kwong Sak Leung. Data
mining using grammar based genetic programming and
applications. Vol. 3. Springer Science & Business Media,
2006.

[37] Machine Learning Cheat Sheet. Available at: http://
peekaboo-vision.blogspot.com/2013/01/machine-learning-
cheat-sheet-for-scikit.html. Accessed July 31, 2015.

[38] Random Forests. Available at: http://blog.yhathq.com/
posts/random-forests-in-python.html. Accessed July 31,
2015.

[39] Random Forests. Available at: http://blogs.sas.com/
content/analitika/files/2012/04/blog_4_11.jpg. Accessed
July 31, 2015.

[40] Breiman, Leo. "Random forests." Machine learning
45.1 (2001): 5-32.

[41] Quinlan, J. Ross. "Induction of decision trees."
Machine learning 1.1 (1986): 81-106.

[42] Perceptron. Available at: http://tex.stackexchange.com/
questions/104334/tikz-diagram-of-a-perceptron. Accessed
July 31, 2015.

[43] Single layer neural network Available at: http://
igva2012.wikispaces.asu.edu/aarvay - Paper 3 - Data
driven visualization of neural networks. Accessed July 31,
2015.

[44] Hinton, Geoffrey E., Simon Osindero, and Yee-Whye
Teh. "A fast learning algorithm for deep belief nets." Neural
computation 18.7 (2006): 1527-1554.

[45] Deep Belief Networks. Available at: http://
www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/
DeepBeliefNetworks. Accessed July 31, 2015.

[46] Autoencoder. Available at: http://www.cs.cmu.edu/
~afyshe/papers/SparseAE. Accessed July 31, 2015.

[47] McCulloch, Warren S., and Walter Pitts. "A logical
calculus of the ideas immanent in nervous activity." The
bulletin of mathematical biophysics 5.4 (1943): 115-133.

[48] Dahl, George E., Navdeep Jaitly, and Ruslan
Salakhutdinov. "Multi-task neural networks for QSAR
predictions." arXiv preprint arXiv:1406.1231 (2014).

[49] Wikipedia, the free encyclopedia. In silico. Available at:
https://en.wikipedia.org/wiki/In_silico. Accessed July 31,
2015].

[50] LeCun, Yann, and Yoshua Bengio. "Convolutional
networks for images, speech, and time series." The
handbook of brain theory and neural networks 3361.10
(1995).

[51] Deep Learning image Available at: http://
www.rsipvision.com/exploring-deep-learning/. Accessed
July 31, 2015.

[52] Erhan, Dumitru, et al. "Why does unsupervised pre-
training help deep learning?." The Journal of Machine
Learning Research 11 (2010): 625-660.

[53] Ackley, David H., Geoffrey E. Hinton, and Terrence J.
Sejnowski. "A learning algorithm for boltzmann machines*."
Cognitive science 9.1 (1985): 147-169.

[54] Hinton, Geoffrey E., and Ruslan R. Salakhutdinov.
"Reducing the dimensionality of data with neural networks."
Science 313.5786 (2006): 504-507.

[55] PubChem’s BioAssay Database (PCBA) http://
www.ncbi.nlm.nih.gov/pubmed/22140110

[56] Rohrer, Sebastian G., and Knut Baumann. "Maximum
unbiased validation (MUV) data sets for virtual screening
based on PubChem bioactivity data." Journal of chemical
information and modeling 49.2 (2009): 169-184.

[57] The Tox21 Dataset http://www.epa.gov/ncct/toxcast/
data.html

[58] Mysinger, Michael M., et al. "Directory of useful
decoys, enhanced (DUD-E): better ligands and decoys for
better benchmarking." Journal of medicinal chemistry 55.14
(2012): 6582-6594.

[59] Rogers, David, and Mathew Hahn. "Extended-
connectivity fingerprints." Journal of chemical information
and modeling 50.5 (2010): 742-754.

[60] ROC curve image. Wikipedia, the free encyclopedia.
Receiver operating characteristic. Available at: https://
en.wikipedia.org/wiki/Receiver_operating_characteristic.
Accessed July 31, 2015].

[61] The Central Dogma of Biology Available at: http://
microbe.net/2014/03/24/dna-based-methods-for-
bioaerosol-analysis-great-resource/. Accessed July 31,
2015.

[62] Dawes TD, Turincio R, Jones SW, et al. Compound
Transfer by Acoustic Droplet Ejection Promotes Quality and
Efficiency in Ultra-High-Throughput Screening Campaigns.
J Lab Autom. 2015;

[63] The Pivot Park Screening Center. Available at: http://
www.pivotparkscreeningcentre.com/22/uhts-lab/. Accessed
July 31, 2015.

�29

http://www.ncbi.nlm.nih.gov/pubmed/22140110
http://www.epa.gov/ncct/toxcast/data.html
http://www.pivotparkscreeningcentre.com/22/uhts-lab/

[64] Newton, Michael A., and Lisa M. Chung. "Gamma-
based clustering via ordered means with application to
gene-expression analysis." Annals of statistics 38.6 (2010):
3217.

[65] Hecht, David, and Gary B. Fogel. "Computational
intelligence methods for docking scores." Current
Computer-Aided Drug Design 5.1 (2009): 56-68.

[66] Morris, Garrett M., et al. "Automated docking using a
Lamarckian genetic algorithm and an empirical binding free
energy function." Journal of computational chemistry 19.14
(1998): 1639-1662.

[67] David Page, et al. "An inductive logic programming
approach to validate hexose binding biochemical
knowledge." Inductive Logic Programming. Springer Berlin
Heidelberg, 2010. 149-165.

[68] Jain, Siddhartha, Anthony Gitter, and Ziv Bar-Joseph.
"Multitask Learning of Signaling and Regulatory Networks
with Application to Studying Human Response to Flu."
PLoS computational biology 10.12 (2014): e1003943.

[69] Netflix. “Distributed Neural Networks with GPUs in the
AWS Cloud”. Available at: http://techblog.netflix.com/
2014/02/distributed-neural-networks-with-gpus.html.
Accessed August 2, 2015.

[70] Srivastava, Nitish, et al. "Dropout: A simple way to
prevent neural networks from overfitting." The Journal of
Machine Learning Research 15.1 (2014): 1929-1958.

[71] Available at: http://fastml.com/deep-learning-these-
days/. Accessed August 3, 2015.

[72] LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton.
"Deep learning." Nature 521.7553 (2015): 436-444.

�30

